• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 3
    Mar.  2019
    Turn off MathJax
    Article Contents
    Xu Jianyong, Zhu Xiangfeng, Song Yu, Hu Shouzhi, 2019. Geochemical Characteristics and Oil-Source Correlation of Paleogene Source Rocks in the South Yellow Sea Basin. Earth Science, 44(3): 848-858. doi: 10.3799/dqkx.2018.377
    Citation: Xu Jianyong, Zhu Xiangfeng, Song Yu, Hu Shouzhi, 2019. Geochemical Characteristics and Oil-Source Correlation of Paleogene Source Rocks in the South Yellow Sea Basin. Earth Science, 44(3): 848-858. doi: 10.3799/dqkx.2018.377

    Geochemical Characteristics and Oil-Source Correlation of Paleogene Source Rocks in the South Yellow Sea Basin

    doi: 10.3799/dqkx.2018.377
    • Received Date: 2018-12-06
    • Publish Date: 2019-03-15
    • Researches on the hydrocarbon potential of the source rock in the Paleogene Funing Formation, and origin of the Paleogene crude oil in the southern depression of the South Yellow Sea Basin (SYSB) are relatively weak.Based on the systematically organic geochemical analyses (TOC, Rock-Eval, GC-MS of saturates and aromatics, stable carbon isotope) of the Paleogene core, cuttings, oil sand and crude oil samples, combined with vitrinite reflectance determination, the geochemical characteristics of source rocks and crude oil are revealed, and oil-source correlation is obtained.The results indicate that the Paleogene source rocks in the southern depression mainly deposited in the fourth (E1f4) and second memebers (E1f2) of Funing Formation, with moderate-good organic matter (OM) abundance, type Ⅱ2-Ⅲ kerogen and within low mature-mature stage.Mixed OM sources, dominated by terrestrial OM are observed in E1f4 and E1f2 source rocks, biomarker ratios indicate that E1f4 source rocks were deposited in dysoxic, relatively high salinity condition.Whereas during E1f2 source rocks deposition, anoxic and relatively low salinity condition is prevailed.The Paleogene crude oil contains relatively high saturates content, with small UCM peak, and has entered into the mature stage.Oil-source correlation results indicate that the Dainan crude oil (oil sand extraction) is related to the E1f4 source rocks, whereas E1f3 crude oil may be derived from E1f2 source rocks.

       

    • loading
    • Bechtel, A., Jia, J.L., Strobl, S.A.I., et al., 2012.Palaeoenvironmental Conditions during Deposition of the Upper Cretaceous Oil Shale Sequences in the Songliao Basin (NE China):Implications from Geochemical Analysis.Organic Geochemistry, 46:76-95. https://doi.org/10.1016/j.orggeochem.2012.02.003
      Cai, J., Cui, M., Liu, Z.F., et al., 2014a.Sedimentary Facies and Analyze on Reservoir-Seal Assemblage of the Dainan Formation of Paleogene in Nan 5 Sag, Nanhuanghai Basin.Journal of East China Institute of Technology (Natural Science Edition), 37(4):395-402 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201404007
      Cai, J., Zhao, Z.G., Zhang, X.L., et al., 2014b.On Sedimentary Facies in Funing Formation of Northern Sag in North Depression in South Yellow Sea Basin.Journal of Geology, 38(4):530-535 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201404002
      Cai, J., Wu, K.Q., Wang, P., et al., 2016.Sedimentary Facies of the Paleogene Funing Formation in the South Depression of the South Yellow Sea Basin.Journal of Geology, 40(1):125-134 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201601017
      Coplen, T.B., 2011.Guidelines and Recommended Terms for Expression of Stable-Isotope-Ratio and Gas-Ratio Measurement Results.Rapid Communications in Mass Spectrometry, 25(17):2538-2560. https://doi.org/10.1002/rcm.5129
      Cranwell, P.A., 1977.Organic Geochemistry of Cam Loch (Sutherland) Sediments.Chemical Geology, 20:205-221. https://doi.org/10.1016/0009-2541(77)90044-4
      Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., et al., 1978.Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation.Nature, 272(5650):216-222. https://doi.org/10.1038/272216a0
      Eglinton, G., Hamilton, R.J., 1967.Leaf Epicuticular Waxes.Science, 156(3780):1322-1335. https://doi.org/10.1126/science.156.3780.1322
      Fang, C.H., Wang, Y.F., Zheng, D.W., et al., 2007.Maceral and Petrology of Lower Tertiary Source Rock in Qintong Sag, Subei Basin.Lithologic Reservoirs, 19(4):87-90, 130 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc200704015
      Fang, C.H., Zhang, Z.H., Wang, Y.F., et al., 2008.Geochemical Characteristics of the Lower Tertiary Source Rock in Qintong Sag, Subei Basin.Journal of Xi'an Shiyou University (Natural Science Edition), 23(6):1-5 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xasyxyxb200806001
      Ficken, K.J., Li, B., Swain, D.L., et al., 2000.An n-Alkane Proxy for the Sedimentary Input of Submerged/Floating Freshwater Aquatic Macrophytes.Organic Geochemistry, 31(7-8):745-749. https://doi.org/10.1016/s0146-6380(00)00081-4
      Gross, D., Sachsenhofer, R.F., Bechtel, A., et al., 2015.Organic Geochemistry of Mississippian Shales (Bowland Shale Formation) in Central Britain:Implications for Depositional Environment, Source Rock and Gas Shale Potential.Marine and Petroleum Geology, 59:1-21. https://doi.org/10.1016/j.marpetgeo.2014.07.022
      Hou, Q.J., Jin, Q., Niu, C.M., et al., 2018.Distribution Characteristics and Main Controlling Factors of Main Hydrocarbon Source Rocks in Liaodong Bay Area.Earth Science, 43(6):2160-2171 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.586
      Lai, W.Z., 2002.Sedimentary Basins and Petroleum of the Yellow Sea.Marine Geology Letters, 18(11):13-16 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=be792ff710fe51b7420772d4ef45efb5&encoded=0&v=paper_preview&mkt=zh-cn
      Langford, F.F., Blanc-Valleron, M.M., 1990.Interpreting Rock-Eval Pyrolysis Data Using Graphs of Pyrolizable Hydrocarbonsvs.Total Organic Carbon.AAPG Bulletin, 74(6):799-804. https://doi.org/10.1306/0c9b238f-1710-11d7-8645000102c1865d
      Li, S.F., Hu, S.Z., He, S., et al., 2010.Oil-Source Correlation for Biodegraded Oils in the North Slope of the Biyang Depression.Acta Petrolei Sinica, 31(6):946-951 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201006012
      Liang, D.G., Chen, J.P., 2005.Oil-Source Correlations for High and over Matured Marine Source Rocks in South China.Petroleum Exploration and Development, 32(2):8-14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200502002
      Liao, Y.S., 1992.The New Development in Petroleum Stable Isotope Geochemistry.Journal of Chinese Mass Spectrometry Society, 13(4):22-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZPXB199204004.htm
      Liu, B., Bechtel, A., Sachsenhofer, R.F., et al., 2017.Depositional Environment of Oil Shale within the Second Member of Permian Lucaogou Formation in the Santanghu Basin, Northwest China.International Journal of Coal Geology, 175:10-25. https://doi.org/10.1016/j.coal.2017.03.011
      Luo, W.F., Yu, W.D., Ma, X.D., et al., 2018.Exploration Achievement of Lithological Oil Reservoirs in the South of Haian Depression, the Subei Basin and Its Enlightenment.China Petroleum Exploration, 23(3):56-63 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgsykt201803007
      Nott, C.J., Xie, S.C., Avsejs, L.A., et al., 2000.n-Alkane Distributions in Ombrotrophic Mires as Indicators of Vegetation Change Related to Climatic Variation.Organic Geochemistry, 31(2-3):231-235. https://doi.org/10.1016/s0146-6380(99)00153-9
      Peters, K.E., 1986.Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis.AAPG Bulletin, 70:318-329. https://doi.org/10.1306/94885688-1704-11d7-8645000102c1865d
      Peters, K.E., Moldowan, J.M., 1993.The Biomarker Guide:Interpreting Molecular Fossils in Petroleum and Ancient Sediments.Prentice Hall, New Jersey.
      Sachsenhofer, R.F., Popov, S.V., Akhmetiev, M.A., et al., 2017.The Type Section of the Maikop Group (Oligocene-Lower Miocene) at the Belaya River (North Caucasus):Depositional Environment and Hydrocarbon Potential.AAPG Bulletin, 101(3):289-319. https://doi.org/10.1306/08051616027
      Song, Y., Bechtel, A., Sachsenhofer, R.F., et al., 2017.Depositional Environment of the Lower Cretaceous Muling Formation of the Laoheishan Basin (NE China):Implications from Geochemical and Petrological Analyses.Organic Geochemistry, 104:19-34. https://doi.org/10.1016/j.orggeochem.2016.11.008
      Song, Y., Liu, Z.J., Meng, Q.T., et al., 2016.Multiple Controlling Factors of the Enrichment of Organic Matter in the Upper Cretaceous Oil Shale Sequences of the Songliao Basin, NE China:Implications from Geochemical Analyses.Oil Shale, 33(2):142-166. https://doi.org/10.3176/oil.2016.2.04
      Tissot, B.T., Welte, D.H., 1984.Petroleum Formation and Occurrences.Springer-Verlag, Berlin.
      van Kaam-Peters, H.M.E., Schouten, S., de Leeuw, J.W., et al., 1997.A Molecular and Carbon Isotope Biogeochemical Study of Biomarkers and Kerogen Pyrolysates of the Kimmeridge Clay Facies:Palaeoenvironmental Implications.Organic Geochemistry, 27(7-8):399-422. https://doi.org/10.1016/s0146-6380(97)00084-3
      Wu, X.Q., Chen, Y.B., Liu, Q.Y., et al., 2019.Molecular Geochemical Characteristics of Source Rocks in the 5th Member of the Upper Triassic Xujiahe Formation in the Xinchang Gas Field, the Western Sichuan Depression.Earth Science, 44(3):859-871 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.236
      Wu, Z.Q., Lu, K., Yan, G.J., et al., 2008.Geophysical Exploration Methods of Early Cenozoic Oil Gas in South Yellow Sea.Marine Geology Letters, 24(8):1-7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt200808001
      Xiao, G.L., 2002.Reassessment of Petroleum Geologic Features and Potential Reserves in the South Yellow Sea Basin.Marine Geology & Quaternary Geology, 22(2):81-87 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200202012
      Xu, X.H., Zhou, X.J., Peng, J.N., 2014.Exploration Targets in Southern Yellow Sea through Analysis of Tectono-Depositional Evolution and Hydrocarbon Accumulation of Marine Basin in Yangtze Area.Petroleum Geology & Experiment, 36(5):523-531, 545 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201405002
      Yao, Y.J., Feng, Z.Q., Hao, T.Y., et al., 2008.A New Understanding of the Structural Layers in the South Yellow Sea Basin and Their Hydrocarbon-Bearing Characteristics.Earth Science Frontiers, 15(6):232-240 (in Chinese with English abstract).
      Yao, Y.J., Xia, B., Feng, Z.Q., et al., 2005.Tectonic Evolution of the South Yellow Sea since the Paleozoic.Petroleum Geology & Experiment, 27(2):124-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200502004.htm
      Zhang, M.M., Li, Z., 2018.Thermal Maturity of the Permian Lucaogou Formation Organic-Rich Shale at the Northern Foot of Bogda Mountains, Junggar Basin (NW China):Effective Assessments from Organic Geochemistry.Fuel, 211:278-290. https://doi.org/10.1016/j.fuel.2017.09.069
      Zheng, Q.G., Cai, L.G., Ding, W.L., et al., 2005.Development and Evolution of Basins in Yellow Sea.Oil & Gas Geology, 26(5):647-654 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201804013
      蔡佳, 崔敏, 刘志峰, 等, 2014a.南黄海盆地南五凹古近系戴南组沉积相及储盖组合分析.东华理工大学学报(自然科学版), 37(4):395-402. http://d.old.wanfangdata.com.cn/Periodical/hddzxyxb201404007
      蔡佳, 赵志刚, 张喜林, 等, 2014b.南黄海盆地北部坳陷北凹阜宁组沉积相研究.地质学刊, 38(4):530-535. http://d.old.wanfangdata.com.cn/Periodical/jsdz201404002
      蔡佳, 吴克强, 王鹏, 等, 2016.南黄海盆地南部坳陷古近系阜宁组沉积相分析.地质学刊, 40(1):125-134. doi: 10.3969/j.issn.1674-3636.2016.01.125
      方朝合, 王义凤, 郑德温, 等, 2007.苏北盆地溱潼凹陷古近系烃源岩显微组分分析.岩性油气藏, 19(4):87-90, 130. doi: 10.3969/j.issn.1673-8926.2007.04.015
      方朝合, 张枝焕, 王义凤, 等, 2008.苏北盆地溱潼凹陷第三系烃源岩地球化学特征.西安石油大学学报(自然科学版), 23(6):1-5. doi: 10.3969/j.issn.1673-064X.2008.06.001
      侯庆杰, 金强, 牛成民, 等, 2018.辽东湾地区主力烃源岩分布特征与主控因素.地球科学, 43(6):2160-2171. https://doi.org/10.3799/dqkx.2018.586
      赖万忠, 2002.黄海海域沉积盆地与油气.海洋地质动态, 18(11):13-16. doi: 10.3969/j.issn.1009-2722.2002.11.006
      李水福, 胡守志, 何生, 等, 2010.泌阳凹陷北部斜坡带生物降解油的油源对比.石油学报, 31(6):946-951. doi: 10.3969/j.issn.1001-8719.2010.06.019
      梁狄刚, 陈建平, 2005.中国南方高、过成熟区海相油源对比问题.石油勘探与开发, 32(2):8-14. doi: 10.3321/j.issn:1000-0747.2005.02.002
      廖永胜, 1992.石油稳定同位素地球化学新进展.质谱学报, 13(4):22-33. http://www.cnki.com.cn/Article/CJFDTotal-ZPXB199204004.htm
      骆卫峰, 余文端, 马晓东, 等, 2018.苏北盆地海安凹陷南部岩性油藏勘探成果及启示.中国石油勘探, 23(3):56-63. doi: 10.3969/j.issn.1672-7703.2018.03.007
      吴小奇, 陈迎宾, 刘全有, 等, 2019.川西坳陷新场气田须家河组五段烃源岩分子地球化学特征.地球科学, 44(3):859-871. https://doi.org/10.3799/dqkx.2018.236
      吴志强, 陆凯, 闫桂京, 等, 2008.南黄海前新生代油气地球物理勘探方法.海洋地质动态, 24(8):1-7. doi: 10.3969/j.issn.1009-2722.2008.08.001
      肖国林, 2002.南黄海盆地油气地质特征及其资源潜力再认识.海洋地质与第四纪地质, 22(2):81-87. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200202012
      徐旭辉, 周小进, 彭金宁, 2014.从扬子地区海相盆地演化改造与成藏浅析南黄海勘探方向.石油实验地质, 36(5):523-531, 545. http://d.old.wanfangdata.com.cn/Periodical/sysydz201405002
      姚永坚, 冯志强, 郝天珧, 等, 2008.对南黄海盆地构造层特征及含油气性的新认识.地学前缘, 15(6):232-240. doi: 10.3321/j.issn:1005-2321.2008.06.030
      姚永坚, 夏斌, 冯志强, 等, 2005.南黄海古生代以来构造演化.石油实验地质, 27(2):124-128. doi: 10.3969/j.issn.1001-6112.2005.02.005
      郑求根, 蔡立国, 丁文龙, 等, 2005.黄海海域盆地的形成与演化.石油与天然气地质, 26(5):647-654. doi: 10.3321/j.issn:0253-9985.2005.05.015
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (5278) PDF downloads(73) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return