• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Li Leguang, Wang Lianxun, Tian Yang, Ma Changqian, Zhou Fangchun, 2019. Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from in Situ Mineral Analysis. Earth Science, 44(7): 2532-2550. doi: 10.3799/dqkx.2018.378
    Citation: Li Leguang, Wang Lianxun, Tian Yang, Ma Changqian, Zhou Fangchun, 2019. Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from in Situ Mineral Analysis. Earth Science, 44(7): 2532-2550. doi: 10.3799/dqkx.2018.378

    Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from in Situ Mineral Analysis

    doi: 10.3799/dqkx.2018.378
    • Received Date: 2018-12-05
    • Publish Date: 2019-07-15
    • Granitic pegmatites are widely distributed in the inner and adjacent region of the Late Mesozoic Mufushan granitic complex in South China. Some of them are rich in Li-Nb-Ta and related elements, forming large-ultra-large rare metal deposits. This study focuses on the lithium-poor pegmatites from Duanfengshan area in the northern Mufushan and the newly discovered lithium-rich pegmatite from Renli area in the south. Hereby we provided detailed petrographic and in situ EPMA and LA-ICP-MS geochemical analysis of major and characteristic minerals (feldspar, mica, tourmaline, garnet, beryl, columbite-tantalite) from the Mufushan pegmatites, aiming to constrain the classification, evolution and mineralization of the investigated pegmatites. Based on the combination of the characteristics minerals, the Mufushan pegmatites have been divided into five groups:Tur-pegmatite, Tur-Brl-pegmatite, Brl-pegmatite, Col-Brl-pegmatite in Duanfengshan area and Elb-Lpd-pegmatite in Renli area. Compositional variation of feldspar, mica, tourmaline and garnet from the studied pegmatites display continuous magmatic evolution sequence. From low to high evolution degrees, the Mufushan pegmatites are Tur-pegmatite→Tur-Brl-pegmatite→Brl-pegmatite→Col-Brl-pegmatite→Elb-Lpd-pegmatite, corresponding to the mineralization stages of metal barren→(Be-bearing)→Be-rich→Be, Nb, Ta-rich→Li, Be, Nb, Ta-rich, respectively. This result indicates that the Renli pegmatites have evolved to a relatively late-stage with various rare metal enrichment, which thus has higher potential of Li-Nb-Ta polymetallic mineralization. In contrast, the evolutionary degrees of Duanfengshan pegmatites are relatively low. A strongly zoned tourmaline crystal has been observed in the Tur-Brl-pegmatite from Duanfengshan area, in which five compositional zones from inside to outside can be divided. The content of incompatible elements such as Li, Zn, Ga, Ge, Nb, Ta, Sn, Pb gradually increased from inner to outter, which clearly recording the normal magmatic evolution sequences and the rare metal enrichment processes. Combined with previous studies, our work suggests that the Mufushan pegmatites are generated by extremely prolonged fractional crystallization of the Mufushan massive granitic magma, representing the final-stage product of granitic magma.

       

    • loading
    • Černý, P., 1991. Rare-Element Granitic Pegmatites. Part Ⅱ:Regional and Global Environments and Petrogenesis. Geoscience Canada, 18(2):68-81.
      Dutrow, B. L., Henry, D. J., 2011. Tourmaline:A Geologic DVD. Elements, 7(5):301-306. https://doi.org/10.2113/gselements.7.5.301
      Henry, D.J., Guidotti, C.V., 1985. Tourmaline as a Petrogenetic Indicator Mineral-An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70(1):1-15. doi: 10.1093-cvr-cvr203/
      Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline-Supergroup Minerals. American Mineralogist, 96(5/6):895-913. https://doi.org/10.2138/am.2011.3636
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B:Atomic Spectroscopy, 78:50-57. https://doi.org/10.1016/j.sab.2012.09.007
      Ji, W. B., Faure, M., Lin., W., et al., 2018a. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance:1. Structural Analysis and Geochronological Constraints. Journal of Geophysical Research:Solid Earth, 123(1):689-710. https://doi.org/10.1002/2017jb014597
      Ji, W. B., Faure, M., Lin.W., et al., 2018b. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance:2. Magnetic Fabrics and Gravity Survey. Journal of Geophysical Research:Solid Earth, 123(1):711-731. https://doi.org/10.1002/2017jb014598
      Ji, W. B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (middle Yangtze Region), South China:Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141:174-193. https://doi.org/10.1016/j.jseaes.2016.07.005
      Li, J. K., Zou, T. R., Liu, X. F., et al., 2015. The Metallogenetic Regularities of Lithium Deposits in China. Acta Geologica Sinica (English Edition), 89(2):652-670. https://doi.org/10.1111/1755-6724.12453
      Li, P., Li, J. K., Pei, R. F., et al., 2017. Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass:Constrains from Geochronological Evidence. Earth Science, 42(10):1684-1696 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.114
      Liu, L. J., Wang, ,D. H., Liu, X. F., et al., 2017. The Main Types, Distribution Features and Present Situation of Exploration and Development for Domestic and Foreign Lithium Mine. Geology in China, 44(2):263-278 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702004
      Liu, X., Zhou, F. C., Huang, Z. B., et al., 2018. Discovery of Renli Superlarge Pegmatite-Type Nb-Ta Polymetallic Deposit in Pingjiang, Hunan Province and Its Significances. Geotectonica et Metallogenia, 42(2):235-243 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802004
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      London, D., Morgan, G. B., Hervig, R. L., 1989. Vapor-Undersaturated Experiments with Macusani Glass+H2O at 200 MPa, and the Internal Differentiation of Granitic Pegmatites. Contributions to Mineralogy and Petrology, 102(1):1-17. https://doi.org/10.1007/bf01160186
      Monier, G., Robert, J. L., 1986. Evolution of the Miscibility Gap between Muscovite and Biotite Solid Solutions with Increasing Lithium Content:An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600℃, 2 kbar PH2O:Comparison with Natural Lithium Micas. Mineralogical Magazine, 50(358):641-651. https://doi.org/10.1180/minmag.1986.050.358.09
      Rao, C., Wang, R. C., Zhang, A. C., et al., 2012. The Corundum Plus Tourmaline Nodules Related to Hydrothermal Alteration of Spodumene in the Nanping No. 31 Pegmatite Dyke, Fujian Province, Southeastern China. Canadian Mineralogist, 50(6), 1623-1635. https://doi.org/10.3749/canmin.50.6.1623
      Samadi, R., Miller, N. R., Mirnejad, H., et al., 2014. Origin of Garnet in Aplite and Pegmatite from Khajeh Morad in Northeastern Iran:A Major, Trace Element, and Oxygen Isotope Approach. Lithos, 208-209:378-392. https://doi.org/10.1016/j.lithos.2014.08.023
      Selway, J. B., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1-4):1-30. https://doi.org/10.2113/gsemg.14.1-4.1
      Shearer, C. K., Papike, J. J., Jolliff, B. L., 1992. Petrogenetic Links among Granites and Pegmatites in the Harney Peak Rare-Element Granite-Pegmatite System, Black Hills, South Dakota. Canadian Mineralogist, 30(3):785-809.
      Tindle, A. G., Webb, P. C., 1990. Estimation of Lithium Contents in Trioctahedral Micas Using Microprobe Data:Application to Micas from Granitic Rocks. European Journal of Mineralogy, 2(5):595-610. https://doi.org/10.1127/ejm/2/5/0595
      Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas:Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(409):809-834. https://doi.org/10.1180/minmag.1997.061.409.05
      Trueman, D., Černý, P., 1982. Exploration for Rare-Element Granitic Pegmatites. In: Černý, P., ed., Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada, Québec.
      Wang, D. H., Wang, R. J., Li, J. K., et al., 2013. The Progress in the Strategic Research and Survey of Rare Earth, Rare Metal and Rare-Scattered Elements Mineral Resources. Geology in China, 40(2):361-370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201302002.htm
      Wang, D. H., Zhao, T., He, H. H., et al., 2016. Review of Three Rare Mineral Resources Investigation and Progress in Central-South China. Journal of Guilin University of Technology, 36(1):1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201601001
      Wang, H., Li, P., Ma, H. D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6):1053-1062 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201706005
      Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization:A Case Study of the Mufushan Complex, South China. Lithos, 206-207:147-163. https://doi.org/10.1016/j.lithos.2014.07.026
      Wang, P., Pan, Z. L., Weng, L. B., et al., 1982. System Mineralogy (Middle). Geological Publishing House, Beijing, 155 (in Chinese).
      Wang, R., C., Che, X. D., Zhang, W. L., et al., 2009. Geochemical Evolution and Late Re-Equilibration of Na-Cs-Rich Beryl from the Koktokay #3 Pegmatite (Altai, NW China). European Journal of Mineralogy, 21(4):795-809. https://doi.org/10.1127/0935-1221/2009/0021-1936
      Wang, Z. P., Liu, S. B., Ma, S. C., et al., 2018. Metallogenic Regularity, Deep and Periphery Prospecting of Dangba Superlarge Spodumene Deposit in Aba, Sichuan Province. Earth Science, 43(6):2029-2041 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.604
      Wen, C. H., Chen, J. F., Luo, X, Y., et al., 2016. Geochemical Features of the Chuanziyuan Rare Metal Pegmatite in Northeastern Hunan, China. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):171-177 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201601020
      Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2011. Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China):Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 187(1-2):33-57. https://doi.org/10.1016/j.precamres.2011.02.003
      Xu, Z. Q., Wang, Q. C., Zhao, Z. B., et al., 2018. On the Structural Backgrounds of the Large-Scale "Hard-Rock Type" Lithium Ore Belts in China. Acta Geologica Sinica, 92(6):1091-1106 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201806001
      Yang, S. Y., Jiang, S. Y., 2012. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic- Intrusive Complex, Southeast China:Evidence for Boron Mobilization and Infiltration during Magmatic- Hydrothermal Processes. Chemical Geology, 312-313:177-189. https://doi.org/10.1016/j.chemgeo.2012.04.026
      Yang, S. Y., Jiang, S. Y., Palmer, M. R., 2015a. Chemical and Boron Isotopic Compositions of Tourmaline from the Nyalam Leucogranites, South Tibetan Himalaya:Implication for Their Formation from B-Rich Melt to Hydrothermal Fluids. Chemical Geology, 419:102-113. https://doi.org/10.1016/j.chemgeo.2015.10.026
      Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2015b. Tourmaline as a Recorder of Magmatic-Hydrothermal Evolution:An in Situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 170(5-6):42. https://doi.org/10.1007/s00410-015-1195-7
      Yang, Y. Q., Ni, Y. X., Guo, Y. Q., et al., 1987. Rock- Rorming and Ore Forming Characteristics of the Xikeng Granitic Pegmatites in Fujian Province. Mineral Deposits, 6(3):12-23 (in Chinese with English abstract).
      Zhang, A. C., Wang, R. C., Jiang, S. Y., et al., 2008. Chemical and Textural Features of Tourmaline from the Spodumene-Subtype Koktokay No. 3 Pegmatite, Altai, Northwestern China:A Record of Magmatic to Hydrothermal Evolution. Canadian Mineralogist, 46(1):41-58. https://doi.org/10.3749/canmin.46.1.41
      Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 22(6):1374-1380. https://doi.org/10.1017/s143192761601182x
      Zhu, J.C., Wu, C. N., Liu, C. S., et al., 2000. Magmatic-Hydrothermal Evolution and Genesis of Koktokay No.3 Rare Metal Pegmatite Dyke, Altai, China. Geological Journal of China Universities, 6(1):40-52 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200001006
      Zou, T. R., Xu, J. G., 1975. On the Origin and Classification of Granite Pegmatites. Geochimica, 4(3):161-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000257704
      李鹏, 李建康, 裴荣富, 等, 2017.幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学依据.地球科学, 42(10):1684-1696. http://earth-science.net/WebPage/Article.aspx?id=3668
      刘丽君, 王登红, 刘喜方, 等, 2017.国内外锂矿主要类型、分布特点及勘查开发现状.中国地质, 44(2):263-278. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201702004
      刘翔, 周芳春, 黄志飚, 等, 2018.湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义.大地构造与成矿学.42(2):235-243. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802004
      王登红, 王瑞江, 李建康, 等, 2013.中国三稀矿产资源战略调查研究进展综述.中国地质, 40(2):361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001
      王登红, 赵汀, 何晗晗, 等, 2016.中南地区三稀矿产资源调查研究及开发利用进展综述.桂林理工大学学报, 36(1):1-8. doi: 10.3969/j.issn.1674-9057.2016.01.001
      王核, 李沛, 马华东, 等, 2017.新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义.大地构造与成矿学, 41(6):1053-1062. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201706005
      王濮, 潘兆橹, 翁玲宝, 等, 1982.系统矿物学(中).北京:地质出版社, 155.
      王子平, 刘善宝, 马圣钞, 等, 2018.四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向.地球科学, 43(6):2029-2041. http://earth-science.net/WebPage/Article.aspx?id=3864
      文春华, 陈剑锋, 罗小亚, 等, 2016.湘东北传梓源稀有金属花岗伟晶岩地球化学特征.矿物岩石地球化学通报, 35(1):171-177. doi: 10.3969/j.issn.1007-2802.2016.01.020
      许志琴, 王汝成, 赵中宝, 等, 2018.试论中国大陆"硬岩型"大型锂矿带的构造背景.地质学报, 92(6):1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
      杨岳清, 倪云翔, 郭永泉, 等, 1987.福建西坑花岗伟晶岩成岩成矿特征.矿床地质, 6(3):12-23. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198703002.htm
      朱金初, 吴长年, 刘昌实, 等, 2000.新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因.高校地质学报, 6(1):40-52. doi: 10.3969/j.issn.1006-7493.2000.01.006
      邹天人, 徐建国, 1975.论花岗伟晶岩的成因和类型的划分.地球化学, 4(3):161-174. doi: 10.3321/j.issn:0379-1726.1975.03.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(1)

      Article views (6112) PDF downloads(199) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return