Citation: | Li Yingxu, Song Xubo, Li Guangming, Xiang Anping, Lan Xiyang, Zhang Linkui, Ciren Sangbu, Cao Huawen, 2019. Properties and Sources of Ore-Forming Fluids in Sefu Gold-Copper Deposit, Quxu County, Tibet, China. Earth Science, 44(6): 2017-2038. doi: 10.3799/dqkx.2018.380 |
Becker, S.P., Fall, A., Bodnar, R.J., 2008.Synthetic Fluid Inclusions. XVII. PVTX Properties of High Salinity H2O-NaCl Solutions (>30% NaCl): Application to Fluid Inclusions that Homogenize by Halite Disappearance from Porphyry Copper and Other Hydrothermal Ore Deposits. Economic Geology, 103(3): 539-554. https://doi.org/10.2113/gsecongeo.103.3.539
|
Bodnar, R.J, Vityk, M.O., 1994.Interpretation of Micro-Thermomertric Data for H2O-NaCI Fluid Inclusions.In: de Vivo, B., Frezzotti, M.I., eds., Fluid Inclusions in Minerals: Methods and Application. Verginia Tech, Blacksberg, 117-130.
|
Bottinga, Y., Javoy, M., 1973. Comments on Oxygen Isotope Geothermometry. Earth and Planetary Science Letters, 20(2):250-265. doi: 10.1016/0012-821X(73)90165-9
|
Brown, P.E., Lamb, W.M., 1989.P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphical Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta, 53(6):1209-1221. https://doi.org/10.1016/0016-7037(89)90057-4
|
Chen, J., Wang, H.N., 2004.Geochemistry.Science Press, Beijing(in Chinese).
|
Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9): 1945-1953(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200809001
|
Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972.Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. https://doi.org/10.1029/jb077i017p03057
|
Copeland, P., Harrison, T.M., Kidd, W.S.F., et al., 1987.Rapid Early Miocene Acceleration of Uplift in the Gangdese Belt, Xizang (Southern Tibet), and Its Bearing on Accommodation Mechanisms of the India-Asia Collision. Earth and Planetary Science Letters, 86(2-4): 240-252. https://doi.org/10.1016/0012-821x(87)90224-x
|
Diamond, L.W., 2001.Review of the Systematics of CO2-H2O Fluid Inclusions. Lithos, 55(1-4): 69-99. https://doi.org/10.1016/s0024-4937(00)00039-6
|
Frost, B. R., Frost, C. D., 2014. Essentials of Igneous and Metamorphic Petrology. Cambridge University Press, New York.
|
Hedenquist, J.W., Lowenstern, J.B., 1994.The Role of Magmas in the Formation of Hydrothermal Ore Deposits.Nature, 370:519-527. https://doi.org/10.1038/370519a0
|
Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting: Part Ⅰ. Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits, 31(4):647-670(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204003.htm
|
Hu, J.R., 1995.Deformation Features of Ductile Shear Belt in Qushui County. Tibetan Geology, (1): 99-109(in Chinese with English abstract).
|
Li, G.M., Zeng, Q.G., Yong, Y.Y., et al., 2005.Discovery of Epithermal Au-Sb Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance:Case Study of Longruri Au-Sb Deposit. Mineral Deposits, 24(6): 595-602(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200506002.htm
|
Liu, H., Zhang, L. K., Huang, H. X., 2019. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper Deposit from the Southern Lhasa Microterrane Terrane, Tibet: Evidence from Fluid Inclusions, H-O-C Isotopic Composition. Earth Science, 44(6): 1935-1956 (in Chinese with English abstract).
|
Liu, Y.F., Hou, Z.Q., Yang, Z.M., et al., 2011.Study on Fluid Inclusion of Nongruri Gold Deposit, Tibet, China. Acta Petrologica Sinica, 27(7): 2150-2158(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107022
|
Lu, H. Z., 2008. Role of CO2 Fluid in the Formation of Gold Deposits: Fluid Inclusion Evidences. Geochimica, 37(4): 321-328(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804005.htm
|
Lu, H.Z., Chi, G.X., Zhu, X.Q., et al., 2018.Geological Characteristics and Ore Forming Fluids of Orogenic Gold Deposits. Geotectonica et Metallogenia, 42(2): 244-265(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802005
|
Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet. Earth Science, 41(7): 1081-1098(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607001.htm
|
Pan, G.T., Mo, X.X., Hou, Z.Q., etal., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
|
Phillips, G.N., Evans, K.A., 2004.Role of CO2 in the Formation of Gold Deposits. Nature, 429(6994): 860-863. https://doi.org/10.1038/nature02644
|
Rodder, E., 1984. Fluid Inclusions. Reviews in Mineralogy. Mineralogical Society of America, 12:1-644. http://d.old.wanfangdata.com.cn/Periodical/dqkx200802015
|
Rusk, B. G., Reed, M. H., Dilles, J. H., 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, 103(2): 307-334. https://doi.org/10.2113/gsecongeo.103.2.307
|
Shepherd, T. J., Rankin, A. H., Alderton, D. H. M., 1985. A Practical Guide to Fluid Inclusion Studies. Chapman & Hall, Blackie.
|
Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. https://doi.org/10.2113/gsecongeo.69.6.843
|
Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China. Earth Science, 42(6): 941-956(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074
|
Wang, Y.Y., Tang, J.X., Song, Y., et al., 2018.Characteristics of the Main Ore Minerals in Tiegelongnan Porphyry-High Sulfidation Deposit, Tibet, China.Acta Mineralogica Sinica, 38(1): 109-122(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201801014
|
Xing, J.B., Ge, L.S., Zou, Y.L., et al., 2003.Geological Geochemical Character of Dongga Gold Deposit in Xietongmen County, Tibet. Gold Geology, 9(2): 28-32(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjdz200302004
|
Xu, J. H., Xiao, X., Chi, H. G., et al., 2011. Fluid Inclusion Study on Gold-Copper Mineralization in Lower Devonian Strata of the Kelan Basin, Altay, China.Acta Petrologica Sinica, 27(5):1299-1310(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105006
|
Yang, Z.M., Hou, Z.Q., Li, Z.Q., et al., 2008a.Direct Record of Primary Fluid Exsolved from Magma: Evidence from Unidirectional Solidification texture(UST) in Quartz Found in Qulong Porphyry Copper Deposit, Tibet.Mineral Deposits, 27(2): 188-199(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200802005.htm
|
Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008b.Qulong Superlarge Porphyry Cu Deposit in Tibet:Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200803003.htm
|
Zhang, S.K., Zheng, Y.Y., Zhang, G.Y., et al., 2013.Geochronological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County, Tibet. Mineral Deposits, 32(3): 641-648(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201303014
|
Zheng, S.H., Hou, F.G., Ni, B.L., 1983.Hydrogen and Oxygen Isotopic Studies of Meteoric Water in China.Chinese Science Bulletin, 28(13):801-806(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdqhx-e201703006
|
Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang. Acta Scicentiarum Naturalum Universitatis Pekinensis, 18(1):99-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ198201010.htm
|
Zheng, Y. F., Chen, J. F., 2000. Stable Isotope Geochemistry. Science Press, Beijing(in Chinese).
|
Zhong, W.T., Li, Y.X., Li, G.M., et al., 2015.Fluid Inclusion of the Seripu Gold Deposit in Dabu of Gangdise, Tibet. Acta Geologica Sinica, 89(3): 599-607(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201503012
|
Zhu, X.Q., Guo, X.W., Zhang, X.H., et al., 2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau.Earth Science, 43 (6):1903-1920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009
|
陈骏, 王鹤年, 2004.地球化学.北京:科学出版社.
|
胡敬仁, 1995.西藏曲水县色甫-科木韧性剪切带变形变质特征.西藏地质, (1):99-109. http://www.cqvip.com/QK/97137X/199501/1918628.html
|
侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4):647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002
|
李光明, 曾庆贵, 雍永源, 等, 2005.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义——以西藏弄如日金锑矿床为例.矿床地质, 24(6):595-602. doi: 10.3969/j.issn.0258-7106.2005.06.003
|
刘洪, 张林奎, 黄瀚霄, 等, 2019.西藏南拉萨微地体鲁尔玛斑岩型铜矿成矿流体性质及演化——来自流体包裹体和H-O-C同位素组成的证据.地球科学, 44(6): 1935-1956. http://earth-science.net/WebPage/Article.aspx?id=4248
|
刘云飞, 侯增谦, 杨志明, 等, 2011.西藏弄如日金矿流体包裹体研究.岩石学报, 27(7):2150-2158. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107022
|
卢焕章, 2008.CO2流体与金矿化:流体包裹体的证据.地球化学, 37(4):321-328. doi: 10.3321/j.issn:0379-1726.2008.04.006
|
卢焕章, 池国祥, 朱笑青, 等, 2018.造山型金矿的地质特征和成矿流体.大地构造与成矿学, 42(2):244-265. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802005
|
孟元库, 许志琴, 马士委, 等, 2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7):1081-1098. http://earth-science.net/WebPage/Article.aspx?id=3320
|
潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
|
王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42 (6):941-956. https://doi.org/10.3799/dqkx.2017.074
|
王艺云, 唐菊兴, 宋扬, 等, 2018.西藏铁格隆南斑岩-高硫型浅成低温热液矿床主要矿石矿物特征.矿物学报, 38 (1):109-122. http://d.old.wanfangdata.com.cn/Periodical/kwxb201801014
|
邢俊兵, 葛良胜, 邹依林, 等, 2003.西藏谢通门县洞嘎金矿床地质地球化学特征.黄金地质, 9(2):28-32. http://d.old.wanfangdata.com.cn/Periodical/hjdz200302004
|
徐九华, 肖星, 迟好刚, 等, 2011.阿尔泰南缘克兰盆地的脉状金-铜矿化及其流体演化.岩石学报, 27(5):1299-1310. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105006
|
杨志明, 侯增谦, 李振清, 等, 2008a.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录.矿床地质, 27(2):188-199. http://d.old.wanfangdata.com.cn/Periodical/kcdz200802004
|
杨志明, 侯增谦, 宋玉财, 等, 2008b.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. http://d.old.wanfangdata.com.cn/Periodical/kcdz200803002
|
张苏坤, 郑有业, 张刚阳, 等, 2013.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束.矿床地质, 32(3):641-648. doi: 10.3969/j.issn.0258-7106.2013.03.014
|
郑淑蕙, 侯发高, 倪葆龄, 1983.我国大气降水的氢氧稳定同位素研究.科学通报, 28(13):801-806. doi: 10.1111-j.1365-2966.2010.17200.x/
|
郑淑蕙, 张知非, 倪葆龄, 等, 1982.西藏地热水的氢氧稳定同位素研究.北京大学学报, 18(1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198304001.htm
|
郑永飞, 陈江峰, 2000.稳定同位素地球化学.北京:科学出版社.
|
钟婉婷, 李应栩, 李光明, 等, 2015.西藏冈底斯成矿带达布矿区色日普金矿流体包裹体研究.地质学报, 89(3): 599-607. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503012
|
朱晓青, 郭兴伟, 张训华, 等.2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学, 43(6): 1903-1920. http://earth-science.net/WebPage/Article.aspx?id=3854
|