• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Li Yingxu, Song Xubo, Li Guangming, Xiang Anping, Lan Xiyang, Zhang Linkui, Ciren Sangbu, Cao Huawen, 2019. Properties and Sources of Ore-Forming Fluids in Sefu Gold-Copper Deposit, Quxu County, Tibet, China. Earth Science, 44(6): 2017-2038. doi: 10.3799/dqkx.2018.380
    Citation: Li Yingxu, Song Xubo, Li Guangming, Xiang Anping, Lan Xiyang, Zhang Linkui, Ciren Sangbu, Cao Huawen, 2019. Properties and Sources of Ore-Forming Fluids in Sefu Gold-Copper Deposit, Quxu County, Tibet, China. Earth Science, 44(6): 2017-2038. doi: 10.3799/dqkx.2018.380

    Properties and Sources of Ore-Forming Fluids in Sefu Gold-Copper Deposit, Quxu County, Tibet, China

    doi: 10.3799/dqkx.2018.380
    • Received Date: 2018-08-11
    • Publish Date: 2019-06-15
    • Sefu deposit is a newly discovered Au-Cu deposit in Gangdese porphyry Cu belt. Its Au orebodies are epithermal type and superimposed on the vein type Cu orebodies. According to detailed geological survey, five periods of hydrothermal activity are distinguished in and around Sefu and Jigongxi. They are Early Eocene magnetite mineralization, Late Eocene-Early Oligocene ductile shearing related one, Early Miocene molybdenum and copper mineralization, and gold mineralization at last. Petrography, microthermometry, laser Raman spectroscopy together with hydrogen and oxygen isotope analysis are conducted on the fluid inclusions in quartz formed during these five periods. It is found that fluid related to magnetite mineralization is the mixture of magma originated aqueous fluid of high temperature, high pressure, high salinity, and formation water. Fluid related to molybdenum mineralization is the mixture of meteoric water and magma originated aqueous fluid of high temperature, high pressure, and high salinity. Fluid related to copper mineralization is the mixture of medium-high temperature, low salinity fluid and containing medium density CO2, which was originated from magma, and low temperature, low salinity fluid which is from meteoric water. Fluid related to gold mineralization is the mixture of medium temperature, low salinity fluid with low density CO2, CH4 and N2, which was originated from magma, and medium temperature, low salinity fluid, which is from meteoric water. Estimation results of trapping temperature and pressure based on microthermometry also show 1.5-4.1 km erosion had happened before molybdenum and copper mineralization, and 6 km erosion had happened before gold mineralization. After gold mineralization, 0.8-1.2 km erosion had happened. Exploration should focus more on gold orebodies in the near north-south striking faults in Sefu area in future.

       

    • loading
    • Becker, S.P., Fall, A., Bodnar, R.J., 2008.Synthetic Fluid Inclusions. XVII. PVTX Properties of High Salinity H2O-NaCl Solutions (>30% NaCl): Application to Fluid Inclusions that Homogenize by Halite Disappearance from Porphyry Copper and Other Hydrothermal Ore Deposits. Economic Geology, 103(3): 539-554. https://doi.org/10.2113/gsecongeo.103.3.539
      Bodnar, R.J, Vityk, M.O., 1994.Interpretation of Micro-Thermomertric Data for H2O-NaCI Fluid Inclusions.In: de Vivo, B., Frezzotti, M.I., eds., Fluid Inclusions in Minerals: Methods and Application. Verginia Tech, Blacksberg, 117-130.
      Bottinga, Y., Javoy, M., 1973. Comments on Oxygen Isotope Geothermometry. Earth and Planetary Science Letters, 20(2):250-265. doi: 10.1016/0012-821X(73)90165-9
      Brown, P.E., Lamb, W.M., 1989.P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphical Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta, 53(6):1209-1221. https://doi.org/10.1016/0016-7037(89)90057-4
      Chen, J., Wang, H.N., 2004.Geochemistry.Science Press, Beijing(in Chinese).
      Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9): 1945-1953(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200809001
      Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972.Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. https://doi.org/10.1029/jb077i017p03057
      Copeland, P., Harrison, T.M., Kidd, W.S.F., et al., 1987.Rapid Early Miocene Acceleration of Uplift in the Gangdese Belt, Xizang (Southern Tibet), and Its Bearing on Accommodation Mechanisms of the India-Asia Collision. Earth and Planetary Science Letters, 86(2-4): 240-252. https://doi.org/10.1016/0012-821x(87)90224-x
      Diamond, L.W., 2001.Review of the Systematics of CO2-H2O Fluid Inclusions. Lithos, 55(1-4): 69-99. https://doi.org/10.1016/s0024-4937(00)00039-6
      Frost, B. R., Frost, C. D., 2014. Essentials of Igneous and Metamorphic Petrology. Cambridge University Press, New York.
      Hedenquist, J.W., Lowenstern, J.B., 1994.The Role of Magmas in the Formation of Hydrothermal Ore Deposits.Nature, 370:519-527. https://doi.org/10.1038/370519a0
      Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting: Part Ⅰ. Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits, 31(4):647-670(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204003.htm
      Hu, J.R., 1995.Deformation Features of Ductile Shear Belt in Qushui County. Tibetan Geology, (1): 99-109(in Chinese with English abstract).
      Li, G.M., Zeng, Q.G., Yong, Y.Y., et al., 2005.Discovery of Epithermal Au-Sb Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance:Case Study of Longruri Au-Sb Deposit. Mineral Deposits, 24(6): 595-602(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200506002.htm
      Liu, H., Zhang, L. K., Huang, H. X., 2019. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper Deposit from the Southern Lhasa Microterrane Terrane, Tibet: Evidence from Fluid Inclusions, H-O-C Isotopic Composition. Earth Science, 44(6): 1935-1956 (in Chinese with English abstract).
      Liu, Y.F., Hou, Z.Q., Yang, Z.M., et al., 2011.Study on Fluid Inclusion of Nongruri Gold Deposit, Tibet, China. Acta Petrologica Sinica, 27(7): 2150-2158(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107022
      Lu, H. Z., 2008. Role of CO2 Fluid in the Formation of Gold Deposits: Fluid Inclusion Evidences. Geochimica, 37(4): 321-328(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804005.htm
      Lu, H.Z., Chi, G.X., Zhu, X.Q., et al., 2018.Geological Characteristics and Ore Forming Fluids of Orogenic Gold Deposits. Geotectonica et Metallogenia, 42(2): 244-265(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802005
      Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet. Earth Science, 41(7): 1081-1098(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607001.htm
      Pan, G.T., Mo, X.X., Hou, Z.Q., etal., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      Phillips, G.N., Evans, K.A., 2004.Role of CO2 in the Formation of Gold Deposits. Nature, 429(6994): 860-863. https://doi.org/10.1038/nature02644
      Rodder, E., 1984. Fluid Inclusions. Reviews in Mineralogy. Mineralogical Society of America, 12:1-644. http://d.old.wanfangdata.com.cn/Periodical/dqkx200802015
      Rusk, B. G., Reed, M. H., Dilles, J. H., 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, 103(2): 307-334. https://doi.org/10.2113/gsecongeo.103.2.307
      Shepherd, T. J., Rankin, A. H., Alderton, D. H. M., 1985. A Practical Guide to Fluid Inclusion Studies. Chapman & Hall, Blackie.
      Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. https://doi.org/10.2113/gsecongeo.69.6.843
      Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China. Earth Science, 42(6): 941-956(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074
      Wang, Y.Y., Tang, J.X., Song, Y., et al., 2018.Characteristics of the Main Ore Minerals in Tiegelongnan Porphyry-High Sulfidation Deposit, Tibet, China.Acta Mineralogica Sinica, 38(1): 109-122(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201801014
      Xing, J.B., Ge, L.S., Zou, Y.L., et al., 2003.Geological Geochemical Character of Dongga Gold Deposit in Xietongmen County, Tibet. Gold Geology, 9(2): 28-32(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjdz200302004
      Xu, J. H., Xiao, X., Chi, H. G., et al., 2011. Fluid Inclusion Study on Gold-Copper Mineralization in Lower Devonian Strata of the Kelan Basin, Altay, China.Acta Petrologica Sinica, 27(5):1299-1310(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105006
      Yang, Z.M., Hou, Z.Q., Li, Z.Q., et al., 2008a.Direct Record of Primary Fluid Exsolved from Magma: Evidence from Unidirectional Solidification texture(UST) in Quartz Found in Qulong Porphyry Copper Deposit, Tibet.Mineral Deposits, 27(2): 188-199(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200802005.htm
      Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008b.Qulong Superlarge Porphyry Cu Deposit in Tibet:Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200803003.htm
      Zhang, S.K., Zheng, Y.Y., Zhang, G.Y., et al., 2013.Geochronological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County, Tibet. Mineral Deposits, 32(3): 641-648(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201303014
      Zheng, S.H., Hou, F.G., Ni, B.L., 1983.Hydrogen and Oxygen Isotopic Studies of Meteoric Water in China.Chinese Science Bulletin, 28(13):801-806(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdqhx-e201703006
      Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang. Acta Scicentiarum Naturalum Universitatis Pekinensis, 18(1):99-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ198201010.htm
      Zheng, Y. F., Chen, J. F., 2000. Stable Isotope Geochemistry. Science Press, Beijing(in Chinese).
      Zhong, W.T., Li, Y.X., Li, G.M., et al., 2015.Fluid Inclusion of the Seripu Gold Deposit in Dabu of Gangdise, Tibet. Acta Geologica Sinica, 89(3): 599-607(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201503012
      Zhu, X.Q., Guo, X.W., Zhang, X.H., et al., 2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau.Earth Science, 43 (6):1903-1920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009
      陈骏, 王鹤年, 2004.地球化学.北京:科学出版社.
      胡敬仁, 1995.西藏曲水县色甫-科木韧性剪切带变形变质特征.西藏地质, (1):99-109. http://www.cqvip.com/QK/97137X/199501/1918628.html
      侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4):647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002
      李光明, 曾庆贵, 雍永源, 等, 2005.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义——以西藏弄如日金锑矿床为例.矿床地质, 24(6):595-602. doi: 10.3969/j.issn.0258-7106.2005.06.003
      刘洪, 张林奎, 黄瀚霄, 等, 2019.西藏南拉萨微地体鲁尔玛斑岩型铜矿成矿流体性质及演化——来自流体包裹体和H-O-C同位素组成的证据.地球科学, 44(6): 1935-1956. http://earth-science.net/WebPage/Article.aspx?id=4248
      刘云飞, 侯增谦, 杨志明, 等, 2011.西藏弄如日金矿流体包裹体研究.岩石学报, 27(7):2150-2158. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107022
      卢焕章, 2008.CO2流体与金矿化:流体包裹体的证据.地球化学, 37(4):321-328. doi: 10.3321/j.issn:0379-1726.2008.04.006
      卢焕章, 池国祥, 朱笑青, 等, 2018.造山型金矿的地质特征和成矿流体.大地构造与成矿学, 42(2):244-265. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802005
      孟元库, 许志琴, 马士委, 等, 2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7):1081-1098. http://earth-science.net/WebPage/Article.aspx?id=3320
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42 (6):941-956. https://doi.org/10.3799/dqkx.2017.074
      王艺云, 唐菊兴, 宋扬, 等, 2018.西藏铁格隆南斑岩-高硫型浅成低温热液矿床主要矿石矿物特征.矿物学报, 38 (1):109-122. http://d.old.wanfangdata.com.cn/Periodical/kwxb201801014
      邢俊兵, 葛良胜, 邹依林, 等, 2003.西藏谢通门县洞嘎金矿床地质地球化学特征.黄金地质, 9(2):28-32. http://d.old.wanfangdata.com.cn/Periodical/hjdz200302004
      徐九华, 肖星, 迟好刚, 等, 2011.阿尔泰南缘克兰盆地的脉状金-铜矿化及其流体演化.岩石学报, 27(5):1299-1310. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201105006
      杨志明, 侯增谦, 李振清, 等, 2008a.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录.矿床地质, 27(2):188-199. http://d.old.wanfangdata.com.cn/Periodical/kcdz200802004
      杨志明, 侯增谦, 宋玉财, 等, 2008b.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. http://d.old.wanfangdata.com.cn/Periodical/kcdz200803002
      张苏坤, 郑有业, 张刚阳, 等, 2013.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束.矿床地质, 32(3):641-648. doi: 10.3969/j.issn.0258-7106.2013.03.014
      郑淑蕙, 侯发高, 倪葆龄, 1983.我国大气降水的氢氧稳定同位素研究.科学通报, 28(13):801-806. doi: 10.1111-j.1365-2966.2010.17200.x/
      郑淑蕙, 张知非, 倪葆龄, 等, 1982.西藏地热水的氢氧稳定同位素研究.北京大学学报, 18(1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198304001.htm
      郑永飞, 陈江峰, 2000.稳定同位素地球化学.北京:科学出版社.
      钟婉婷, 李应栩, 李光明, 等, 2015.西藏冈底斯成矿带达布矿区色日普金矿流体包裹体研究.地质学报, 89(3): 599-607. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503012
      朱晓青, 郭兴伟, 张训华, 等.2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学, 43(6): 1903-1920. http://earth-science.net/WebPage/Article.aspx?id=3854
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(17)  / Tables(3)

      Article views (4597) PDF downloads(49) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return