• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Zhang Liying, Huang Feng, Xu Jifeng, Zeng Yunchuan, Gong Xiaohan, Zhang Zhao, 2019. Petrogenesis and Geochemistry of Meso-Cenozoic Granitic Rocks and Implication of Crustal Structure Changes in Shannan Area, Southern Tibet. Earth Science, 44(6): 1822-1833. doi: 10.3799/dqkx.2018.385
    Citation: Zhang Liying, Huang Feng, Xu Jifeng, Zeng Yunchuan, Gong Xiaohan, Zhang Zhao, 2019. Petrogenesis and Geochemistry of Meso-Cenozoic Granitic Rocks and Implication of Crustal Structure Changes in Shannan Area, Southern Tibet. Earth Science, 44(6): 1822-1833. doi: 10.3799/dqkx.2018.385

    Petrogenesis and Geochemistry of Meso-Cenozoic Granitic Rocks and Implication of Crustal Structure Changes in Shannan Area, Southern Tibet

    doi: 10.3799/dqkx.2018.385
    • Received Date: 2018-08-29
    • Publish Date: 2019-06-15
    • In the southern part of the Lhasa block in southern Tibet, large-scale zonal distribution of granitic rocks is developed, where the important information on the late subduction of the Neo-Tethys oceanic crust and subsequent collisions and post-collision processes in the Indian-Eurasia continent is recorded. In this paper, LA-ICP-MS zircon U-Pb geochronology, Hf isotope and total trace elements and Sr-Nd isotope geochemical analysis of six granitic rock samples collected in the southern Shannan area of the Lhasa block were obtained. The three-stage zircon ages of~90 Ma, 65 Ma and 23 Ma show that three phases of magmatic activity occurred in the area. The rock samples of the three eras are all subalkalic series, with similar adakite characteristics, enriched with high field strength elements and depleted with large ion lithophile elements. The distribution of rare earth elements is right-dip, geochemical with the feature of arc magma. The zircon εHf(t) of all samples in this paper are positive (+5.6-+14.6), suggesting that they may be derived from the partial melting of the new lower crust. Based on the previous data, the La/Yb ratio of granitic rocks is used to quantitatively show the evolution of crustal thickness in the Shannan area for 100 Ma. From the late Mesozoic, the thickness of the crust in the area was thinned from thick to thin in the Early Cenozoic, and gradually thickened thereafter. This is in line with the changes in the crustal structure caused by the subduction of the Neo-Tethys and the Indian-Eurasia collision-postcollision process since Mesozoic to Cenozoic.

       

    • loading
    • Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002.Ig-neous Zircon:Trace Element Composition as an Indica-tor of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7
      Chapman, J. B., Ducea, M. N., DeCelles, P. G., et al., 2015.Tracking Changes in Crustal Thickness during Orogenic Evolution with Sr/Y:An Example from the North Amer-ican Cordillera.Geology, 43(10):919-922. doi: 10.1130/G36996.1
      Chen, J. L., Xu, J. F., Zhao, W. X., et al., 2011. Geochemical Variations in Miocene Adakitic Rocks from the Western and Eastern Lhasa Terrane:Implications for Lower Crustal Flow beneath the Southern Tibetan Plateau.Lith-os, 125(3-4):928-939. https://doi.org/10.1016/j.lith-os.2011.05.006
      Chiaradia, M., 2015. Crustal Thickness Control on Sr/Y Sig-natures of Recent Arc Magmas:An Earth Scale Perspec-tive. Scientific Reports, 5:8115. https://doi.org/10.1038/srep08115
      Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009.The Nature and Timing of Crustal Thickening in Southern Tibet:Geo-chemical and Zircon Hf Isotopic Constraints from Post-collisional Adakites. Tectonophysics, 477(1-2):36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      Dai, Z. W., Li, G. M., Ding, J., et al., 2018. Late Cretaceous Adakite in Nuri Area, Tibet:Products of Ridge Subduc-tion. Earth Science, 43(8):2727-2741(in Chinese with English abstract).
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347:662-665. doi: 10.1038/347662a0
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hu, F. Y., Ducea, M. N., Liu, S. W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts:Global Perspective and a Geologic Application.Scientific Re-ports, 7:7058.
      Huang, F., Xu, J. F., Chen, J. L., et al., 2016. Two Cenozoic Tectonic Events of N-S and E-W Extension in the Lhasa Terrane:Evidence from Geology and Geochronology.Lithos, 245:118-132. https://doi.org/10.1016/j.lith-os.2015.08.014
      Huang, F., Xu, J.F., Zeng, Y.C., et al., 2017.Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred from Contemporaneous Melting of the Mantle and Crust. Geochemistry, Geophysics, Geosystems, 18(11):4074-4095. https://doi.org/10.1002/2017gc007039
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009a.Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogen-esis of the Gangdese Batholith, Southern Tibet. Chemi-cal Geology, 262(3-4):229-245. doi: 10.1016/j.chemgeo.2009.01.020
      Ji, W. Q., Wu, F. Y., Liu, C. Z., et al., 2009b. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batho-lith, Southern Tibet. Science in China (Series D), 52(9):1240-1261. doi: 10.1007/s11430-009-0131-y
      Jiang, Z.Q., Wang, Q., Wyman, D., et al., 2011.Origin of~30 Ma Chongmuda Adakitic Intrusive Rocks in the Southern Gangdese Region, Southern Tibet:Partial Melting of the Northward Subducted Indian Continent Crust? Geochimica, 40(2):126-146(in Chinese with English abstract).
      Jiang, Z.Q., Wang, Q., Wyman, D.A., et al., 2014.Transition from Oceanic to Continental Lithosphere Subduction in Southern Tibet:Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) Intrusive Rocks in the Chanang-Zedong Area, Southern Gangdese. Lithos, 196-197:213-231. doi: 10.1016/j.lithos.2014.03.001
      Kang, Z.Q., Xu, J.F., Wilde, S.A., et al., 2014.Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the Early Sub-duction History of the Neo-Tethys and Gangdese Mag-matic Arc. Lithos, 200-201:157-168. https://doi.org/10.1016/j.lithos.2014.04.019
      Li, X. W., Mo, X. X., Scheltens, M., et al., 2016. Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau.Journal of Earth Science, 27(4):545-570. https://doi.org/10.1007/s12583-016-0713-5
      Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Creta-ceous Crustal Growth in the Gangdese Area, Southern Tibet:Petrological and Sr-Nd-Hf-O Isotopic Evidence from Zhengga Diorite-Gabbro.Chemical Geology, 349-350:54-70 doi: 10.1016/j.chemgeo.2013.04.005
      Ma, L., Wang, Q., Wyman, D. A., et al., 2015. Late Creta-ceous Back-Arc Extension and Arc System Evolution in the Gangdese Area, Southern Tibet:Geochronological, Petrological, and Sr-Nd-Hf-O Isotopic Evidence from Dagze Diabases. Journal of Geophysical Research:Solid Earth, 120(9):6159-6181. doi: 10.1002/2015JB011966
      Mantle, G.W., Collins, W.J., 2008.Quantifying Crustal Thick-ness Variations in Evolving Orogens:Correlation be-tween Arc Basalt Composition and Moho Depth.Geolo-gy, 36(1):87. https://doi.org/10.1130/g24095a.1
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007.Mantle Contribu-tions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Ti-bet.Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      Owens, T.J., Zandt, G., 1997.Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution.Na-ture, 387:37-43.
      Profeta, L., Ducea, M.N., Chapman, J.B., et al., 2016.Quanti-fying Crustal Thickness over Time in Magmatic Arcs.Scientific Reports, 5:17786. https://doi.org/10.1038/srep17786
      Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Me-tabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrolo-gy, 36(4):891-931. doi: 10.1093/petrology/36.4.891
      Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites. Lithos, 245:18-33. https://doi.org/10.1016/j.lithos.2015.07.016
      Wang, Q., McDermott, F., Xu, J.F., et al., 2005.Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, North-ern Tibet:Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6):465. https://doi.org/10.1130/g21522.1
      Wen, D., Liu, D., Chung, S., et al., 2008.Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet.Chemical Ge-ology, 252(3-4):191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
      Xu, B., Griffin, W. L., Xiong, Q., et al., 2017. Ultrapotassic Rocks and Xenoliths from South Tibet:Contrasting Styles of Interaction between Lithospheric Mantle and Asthenosphere during Continental Collision.Geology, 45(1):51-54. https://doi.org/10.1130/g38466.1
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
      Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010.Late Creta-ceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet:Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction? Gondwana Research, 17(4):615-631. doi: 10.1016/j.gr.2009.10.007
      Zhu, D. C., Wang, Q., Cawood, P. A., et al., 2017. Raising the Gangdese Mountains in Southern Tibet.Journal of Geophysical Research:Solid Earth, 122(1):214-223. doi: 10.1002/2016JB013508
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Ter-rane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwa-na Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      Zou, J. Q., Yu, H. X., Wang, B. D., et al., 2018. Petrogenesis and Geological Implications of Early Jurassic Granodio-rites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8):2795-2810(in Chinese with English abstract).
      代作文, 李光明, 丁俊, 等, 2018.西藏努日晚白垩世埃达克岩:洋脊俯冲的产物.地球科学, 43(8):2727-2741. http://earth-science.net/WebPage/Article.aspx?id=3908
      姜子琦, 王强, Wyman, D.A., 等, 2011.西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?地球化学, 40(2):126-146.
      邹洁琼, 余红霞, 王保弟, 等, 2018.南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义.地球科学, 43(8):2795-2810. http://earth-science.net/WebPage/Article.aspx?id=3913
    • dqkx-44-6-1822-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (5505) PDF downloads(61) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return