• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Gao Li'e, Zeng Lingsen, Hu Guyue, Gao Jiahao, Zhao Linghao, Wang Yaying, 2019. Rare Metal Enrichment in Leucogranite within Nariyongcuo Gneiss Dome, South Tibet. Earth Science, 44(6): 1860-1875. doi: 10.3799/dqkx.2018.390
    Citation: Gao Li'e, Zeng Lingsen, Hu Guyue, Gao Jiahao, Zhao Linghao, Wang Yaying, 2019. Rare Metal Enrichment in Leucogranite within Nariyongcuo Gneiss Dome, South Tibet. Earth Science, 44(6): 1860-1875. doi: 10.3799/dqkx.2018.390

    Rare Metal Enrichment in Leucogranite within Nariyongcuo Gneiss Dome, South Tibet

    doi: 10.3799/dqkx.2018.390
    • Received Date: 2018-08-17
    • Publish Date: 2019-06-15
    • The Nariyongcuo gneiss dome, located to eastern Tethyan Himalaya, consists of many types of granites, containing twomica granite, foliated leucogranites, garnet-bearing leucogranite, garnet-bearing pegmatite, and beryl-bearing pegmatite. All the Nariyongcuo leucogranites are evolved granites and resulted from various degrees of collective fractional crystallization of plagioclase, zircon, monazite, apatite and Ti-rich mineral phases. Comparing with Victorinox value of granites, these granites are enriched in rare metal elements of Bi, Cs, Li, Sn, Be, Pb, B, W, Ta, but relatively depleted in Nb. In addition, the wall rocks are also enriched in rare metal elements. Whole rock geochemical data imply that fractional crystallization and hydrothermal metasomatism resulted in rare metal mineralization within the Nariyongcuo gneiss dome. In the Himalayan belt, high evolved granites are widely distributed, and commonly contain rare metal-bearing minerals (niobite, tapiolite, cassiterite, beryl), suggesting that the Himalaya belt could be another new important target for the exploration of race metal deposits.

       

    • loading
    • Antipin, V. S., Savina, E. A., Mitichkin, M. A., et al., 1997.Rare-Metal Lithium-Fluorine Granites, Ongonites, and Topazites of the Southern Baikal Region. Petrology, 7:147-159.
      Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites:A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3):231-234. https://doi.org/10.1130/g37475.1
      Bea, F., 1996.Controls on the Trace Element Composition of Crustal Melts.Transactions of the Royal Society of Edin-burgh:Earth Sciences, 87(1-2):33-41. doi: 10.1017/S0263593300006453
      Cerny, P., Belvin, P.L., Cuney, M., et al., 2005.Granite-Relat-ed Ore Deposits.Economic Geology, 107(2):383-384.
      Chen, J., Lu, J.J., Chen, W.F., et al., 2008.W-Sn-Nb-Ta-Bear-ing Granites in the Nanling Range and Their Relation-ship to Metallogengesis. Geological Journal of China Universities, 14(4):459-473(in Chinese with English ab-stract).
      Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz-Lepidolite Albite Granite (Massif Central, France); The Disseminated Magmatic Sn-Li-Ta-Nb-Be Mineralization. Economic Geology, 87(7):1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766
      Dostal, J., Kontak, D.J., Gerel, O., et al., 2015.Cretaceous On-gonites (Topaz-Bearing Albite-Rich Microleucogranites)from Ongon Khairkhan, Central Mongolia:Products of Extreme Magmatic Fractionation and Pervasive Metaso-matic Fluid:Rock Interaction. Lithos, 236-237:173-189. https://doi.org/10.1016/j.lithos.2015.08.003
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2018.Timing of E-W Extension Deformationin North Himalaya:Evidences from Ar-Ar Age in the Cuonadong Dome, SouthTibet.Earth Sicence, 43(8):2638-2650 (in Chinese with Eng-lish abstract). https://doi.org/10.3799/dqkx.2018.530
      Gao, L.E., Zeng, L.S., Asimow, P.D., 2017.Contrasting Geo-chemical Signatures of Fluid-Absent versus Flu-id-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1
      Gao, L. E., Zeng, L. S., Gao, J. H., et al., 2017. The Miocene Leucogranite in the Nariyongcuo Gneiss Domes, South-ern Tibet:Products from Melting Metapelite and Frac-tional Crystallization. Acta Petrologica Sinica, 33(8):2395-2411(in Chinese with English abstract).
      Glazner, A.F., Coleman, D.S., Bartley, J.M., 2008.The Tenu-ous Connection between High-Silica Rhyolites and Granodiorite Plutons. Geology, 36(2):183-186. https://doi.org/10.1130/g24496a.1
      Groves, D.I., McCarthy, T.S., 1978.Fractional Crystallization and the Origin of Tin Deposits in Granitoinds. Minerali-um Deposita, 13(1):11-22. https://doi.org/10.1007/bf00202905.
      Guo, C. L., Zeng, L. S., Gao, L. E., et al., 2017. Highly Frac-tionated Granitic Minerals and Whole-Rock Geochemis-try Prospecting Markers in Hetian, Fujian Province.Acta Geologica Sinica, 91(8):1796-1817(in Chinese with English abstract).
      Hua, R.M., Zhang, W.L., Gu, S.Y., et al., 2007.Comparison between REE Granite and W-Sn Granite in the Nanling Region, South China, and Their Mineralization.Acta Pet-rologica Sinica, 23(10):2321-2328(in Chinese with English abstract).
      Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2006.New Type of Tin Mineralization Related to Granite in South China:Evidence from Mineral Chemistry, Element and Isotope Geochemistry. Acta Petrologica Sinica, 22(10):2509-2516(in Chinese with English abstract).
      Kirwin, D., 2012.Granite-Related Ore Deposits.Economic Ge-ology, 107(2):383-384. https://doi.org/10.2113/econ-geo.107.2.383
      Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Meltallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract)
      Li, X.H., Li, W.X., Li, Z.X., 2007a.On the Genetic Classifica-tion and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14):1873-1885. https://doi.org/10.1007/s11434-007-0259-0
      Li, Z.L., Hu, R.Z., Yang, J.S., et al., 2007b.He, Pb and S Iso-topic Constraints on the Relationship between the A-Type Qitianling Granite and the Furong Tin Deposit, Hunan Province, China.Lithos, 97(1-2):161-173. https://doi.org/10.1016/j.lithos.2006.12.009
      Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. Geochemical Characteristics, Age and Genesis of Cuonadong Leuco-granite, Tibet. Acta Petrologica et Mineralogica, 35(3):391-406(in Chinese with English abstract).
      Linnen, R.L., Keppler, H., 1997.Columbite Solubility in Gra-nitic Melts:Consequences for the Enrichment and Frac-tionation of Nb and Ta in the Earth's Crust. Contribu-tions to Mineralogy and Petrology, 128(2-3):213-227. https://doi.org/10.1007/s004100050304
      Linnen, R.L., Keppler, H., 2002.Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes.Geochimica et Cosmochimica Acta, 66(18):3293-3301. https://doi.org/10.1016/s0016-7037(02)00924-9
      Liu, Z.C., Wu, F.Y., Ding, L., et al., 2016.Highly Fractionat-ed Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243:337-354. https://doi.org/10.1016/j.lith-os.2015.11.026
      Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2007. Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China:Metallogenic Ages and Corresponding Geo-dynamic Processes. Acta Petrologica Sinica, 23(10):2329-2338(in Chinese with English abstract).
      Pollard, P. J., Nakapadungrat, S., Taylor, R. G., 1995. The Phuket Supersuite, Southwest Thailand; Fractionated I-Type Granites Associated with Tin-Tantalum Mineral-ization. Economic Geology, 90(3):586-602. https://doi.org/10.2113/gsecongeo.90.3.586
      Pollard, P. J., Pichavant, M., Charoy, B., 1987. Contrasting Evolution of Fluorine-and Boron-Rich Tin Systems.Mineralium Deposita, 22(4):315-321. https://doi.org/10.1007/bf00204525
      Raimbault, L., Cuney, M., Azencott, C., et al., 1995.Geochem-ical Evidence for a Multistage Magmatic Genesis of Ta-Sn-Li Mineralization in the Granite at Beauvoir, French Massif Central. Economic Geology, 90(3):548-576. https://doi.org/10.2113/gsecongeo.90.3.548
      Ren, M.H., 2004.Partitioning of Sr, Ba, Rb, Y, and LREE be-tween Alkali Feldspar and Peraluminous Silicic Magma.American Mineralogist, 89(8-9):1290-1303. https://doi.org/10.2138/am-2004-8-918
      Simons, B., Andersen, J.C.Ø., Shail, R.K., et al., 2017.Frac-tionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the Peraluminous Early Permian Variscan Granites of the Cornubian Batholith:Precursor Processes to Magmat-ic-Hydrothermal Mineralisation.Lithos, 278-281:491-512. https://doi.org/10.1016/j.lithos.2017.02.007
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science China Earth Sciences, 60(9):1655-1663. https://doi.org/10.1007/s11430-017-9075-8
      Wang, X. X., Zhang, J. J., Wang, J. M., 2016. Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English ab-stract). https://doi.org/10.3799/dqkx.2016.082
      Wang, Y., 2008. Some Further Discussions on the Genetic Types of the Early Yanshanian (Jurassic) Granitoids in the Nanling Area, SE China. Geological Review, 54(2):162-174(in Chinese with English abstract).
      Wolf, M.B., London, D., 1994.Apatite Dissolution into Peralu-minous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms.Geochimica et Cosmochimi-ca Acta, 58(19):4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0
      Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionat-ed Granites:Recognition and Research. Science China:Earth Sciences, 60(7):1201-1219. https://doi.org/10.1007/s11430-016-5139-1
      Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leuco-granite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt.Acta Petrologica Sinica, 33(5):1420-1444(in Chi-nese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004
      Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005
      Zhang, H. F., Harris, N., Parrish, R., et al., 2004. Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031
      Zhang, Z., Zhang, L.K., Li, G.M., et al., 2017.The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Con-trolling Role of North Himalaya Gneiss Domes. Acta Geoscientica Sinica, 38(5):754-766(in Chinese with English abstract).
      Zhu, J. C., Chen, J., Wang, R. C., et al., 2008. Early Yansha-nian NE-Trending Sn/W-Bearing A-Type Granites in the Western-Middle Part of Nanling Mts Region.Geolog-ical Journal of China Universities, 14(4):474-484(in Chinese with English abstract).
      陈骏, 陆建军, 陈卫锋, 等, 2008.南岭地区钨锡铌钽花岗岩及其成矿作用.高校地质学报, 14(4):459-473. doi: 10.3969/j.issn.1006-7493.2008.04.001
      付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹隆Ar-Ar年代学证据.地球科学, 43(8):2638-2650. https://doi.org/10.3799/dqkx.2018.530
      高利娥, 曾令森, 高家昊, 等, 2017.藏南拿日雍措片穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报, 33(8):2395-2411. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201708005.htm
      郭春丽, 曾令森, 高利娥, 等, 2017.福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究.地质学报, 91(8):1796-1817. doi: 10.3969/j.issn.0001-5717.2017.08.010
      华仁民, 张文兰, 顾晟彦, 等, 2007.南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比.岩石学报, 23(10):2321-2328. doi: 10.3969/j.issn.1000-0569.2007.10.001
      蒋少涌, 赵葵东, 姜耀辉, 等, 2006.华南与花岗岩有关的一种新类型的锡成矿作用:矿物学、元素和同位素地球化学证据.岩石学报, 22(10):2509-2516. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200610011
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
      毛景文, 谢桂青, 郭春丽, 等, 2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报, 23(10):2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002
      王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998. https://doi.org/10.3799/dqkx.2016.082
      汪洋, 2008.南岭燕山早期花岗岩成因类型的进一步探讨.地质论评, 54(2):162-174. doi: 10.3321/j.issn:0371-5736.2008.02.003
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705004
      张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹隆:片麻岩穹隆新成员与穹隆控矿新命题.地球学报, 38(5):754-766. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808008
      朱金初, 陈骏, 王汝成, 等, 2008.南岭中西段燕山早期北东向含锡钨A型花岗岩带.高校地质学报, 14(4):474-484. doi: 10.3969/j.issn.1006-7493.2008.04.002
    • dqkx-44-6-1860-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (4158) PDF downloads(98) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return