• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 2
    Feb.  2020
    Turn off MathJax
    Article Contents
    Liu Bin, Chen Weifeng, Fang Qichun, Tang Xiangsheng, Mao Yufeng, Sun Liqiang, Gao Shuang, Yan Yongjie, Wei Xin, Ling Hongfei, 2020. Study on In-Situ Sulfur Isotope Compositions of Sulfides: Implication for the Source of Pb-Zn Mineralized Body of Niutoushan in the Xiangshan Area. Earth Science, 45(2): 389-399. doi: 10.3799/dqkx.2018.395
    Citation: Liu Bin, Chen Weifeng, Fang Qichun, Tang Xiangsheng, Mao Yufeng, Sun Liqiang, Gao Shuang, Yan Yongjie, Wei Xin, Ling Hongfei, 2020. Study on In-Situ Sulfur Isotope Compositions of Sulfides: Implication for the Source of Pb-Zn Mineralized Body of Niutoushan in the Xiangshan Area. Earth Science, 45(2): 389-399. doi: 10.3799/dqkx.2018.395

    Study on In-Situ Sulfur Isotope Compositions of Sulfides: Implication for the Source of Pb-Zn Mineralized Body of Niutoushan in the Xiangshan Area

    doi: 10.3799/dqkx.2018.395
    • Received Date: 2018-12-25
    • Publish Date: 2020-02-15
    • In recent years, the Pb-Zn mineralization was discovered in the Niutoushan area in the west part of the Xiangshan volcanic basin. The genetic mechanism of Pb-Zn mineralization is still unclear. In order to reveal the source of the Pb-Zn mineralization, in-situ sulfur isotope analysis using laser altered-inductively coupled plasma spectra(LA-MC-ICP-MS)of sulfides is carried out. Paragenetic and crosscutting relationship between sulfide minerals formed by the hydrothermal fluids suggest that the earliest precipitated mineral was pyrite, followed by galena and sphalerite, and the chalcopyrite in fine vein shape was formed at the latest stage of the hydrothermal fluids. The analytical results of this study indicate that the δ34S values of metal sulfide minerals (pyrite, sphalerite, galena and fine-vine chalcopyrite) range from -4.8‰~+5.4‰. In term of sulfur isotopes, not all the sulfide minerals are in completely isotope equilibrium. The δ34SΣS(total sulfur isotope) value of the mineralized fluid calculated from the δ34S values of pyrite at its formation temperature is +3.7‰, which is basically consistent with hydrothermal δ34SΣSvalue obtained from the δ34S values of the paragenetic mineral pair (sphalerite-galena).Therefore, the δ34SΣSvalue of the mineralization fluid(+3.7‰) in the Niutoushan Pb-Zn mineralization indicates that the mineralization fluid was magmatic in origin. Combined with the published dating data of the magmatic rocks of the Xiangshan volcanic basin, the sulfur isotope data of this study suggest that hydrothermal fluid of the Pb-Zn mineralization may have been mainly derived from the subvolcanic magma of the granitic porphyry. The sulfur isotope values of the sphalerite minerals were higher than those of the paragenetic galena in the mineralized bodies, indicating sulfur isotope equilibrium between these two minerals. The temperatures calculated by using the sulfur isotopic compositions of these two minerals are between 197℃ and 476℃, which is consistent with the published temperatures from fluid inclusions. The metallogenic conditions and sources of ore-forming materials of the Niutoushan Pb-Zn mineralization in the Xiangshan volcanic basin are similar to those of Pb-Zn ore deposits in the Huanggangshan and Lizikeng volcanic basins in Northern Wuyi area, which hints promising prospects for Pb-Zn deposit prospecting in the Xiangshan volcanic basin.

       

    • loading
    • Chen, Z. L., Wang, Y., Zhou, Y. G., et al., 2013. SHIMPR U-Pb Dating of Zircons from Volcanic-Intrusive Complexes in the Xiangshan Uranium Ore Field, Jiangxi Province, and Its Geological Implications. Geology in China, 40(1): 217-231 (in Chinese with English abstract).
      Donald, J. B., 1969. Bond Strength and Sulfur Isotopic Fractionation in Coexisting Sulfides: A Reply. Economic Geology, 64(8):56-65. https://doi.org/10.2113/gsecongeo.64.8.936
      Dai, Y. P., Yu, X. Q., Wu, G. G., et al., 2011. Characteristics of Sulfide Minerals, Genetic Type and Metallogenic Epoch of the Caijiaping Lead-Zinc Deposit, North Wuyi Area, Jiangxi Province. Earth Science Frontiers, 18(2): 321-338(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201102029
      Fan, H. H., Ling, H. F., Shen, W. Z., et al., 2001. Nd-Sr-Pb Isotope Geochemistry of the Volcanic-Intrusive Complex at Xiangshan, Jiangxi Province. Acta Petrologica Sinica, 17(3): 395-402(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103007
      Hu, R. Z., Chen, W. T., Xu, D. R., et al., 2017. Reviews and New Metallogenic Models of Mineral Deposits in South China: An Introduction. Journal of Asian Earth Sciences, 137: 1-8. doi: 10.1016/j.jseaes.2017.02.035
      Luo, P., Wu, G. G., Zhang, D., et al., 2009. Geochemistry and Genesis of Shengmikeng Lead-Zinc Deposit in Northern Wuyi, Eastern China. Journal of Geomechanics, 15(4):349-362(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200904004
      Liu, J.G., Li, Z. Y., Nie, J. T., 2017.Thesulfur Isotope Geochemical Characteristics and Its Geological Implications of Lead-Zinc Polymetalic Mineralization in Xiangshan Ore Field, Jiangxi Province. Geological Review, 63(Suppl.):237-238(in Chinese with English abstract).
      Liu, G. Q., Zhao, K. D., Jiang, S. Y., et al., 2018. In-Situ Sulfur Isotope and Trace Element Analysis of Pyrite from the Xiwang Uranium Ore Deposit in South China: Implication for Ore Genesis. Journal of Geochemical Exploration, 195: 49-65. doi: 10.1016/j.gexplo.2018.07.012
      Mao, J. W., Xie, G. Q., Li, X. F., et al., 2004. Mesozoic large scale mineralization and multiple lithospheric extensions in South China. Earth Science Frontiers, 11(1): 45-55(in Chinese with English abstract).
      Mao, J. W., Chen, M. H., Yuan, S. D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) South China and Spatial-Temporal Distribution Metallogenic Belt in Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636-658(in Chinese with English abstract).
      Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551
      Ohmoto, H., Rye, R. O., 1979. Isotope of Sulfur and Carbon. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York, 509-567.
      Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits, Third Edition. John Wiley and Sons, New York, 509-567.
      Pinckney, D. M., Rafter, T. A., 1972. Fractionation of Sulfur Isotopes during Ore Deposition in the Upper Mississippi Valley Zinc-Lead District. Economic Geology, 67(3): 315-328. https://doi.org/10.2113/gsecongeo.67.3.315
      Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12
      Wu, Z. J., Hu, Z. H., 2014. Uranium-Polymetallic Metallogenic Characteristics and Prospecting Direction of Niutoushan Uranium Deposit in Xiangshan Ore-Field. Word Nuclear Geoscience, 31(2):89-94(in Chinese with English abstract).
      Wu, R. G., 1999. The Features of Volcanic Formation in Ruyiting Profile of Xiangshan. Journal of East China Geological Institute, 22(3): 201-208 (in Chinese with English abstract).
      Wang, Y. J., 2015. Characteristics of Granite Porphyry and Intermediate-Basic Dykes and Their Relationship with Uranium Mineralization in the Xiangshan(Dissertation). Beijing Research Institute of Uranium Geology, Beijing (in Chinese with English abstract).
      Wang, J., Nie, J. T., Guo, J., et al., 2016. Characteristics of Deep Polymetallic Mineralization in the Xiangshan Uranium Ore Field of Jiangxi Province. Geology and Exploration, 52(1): 47-59 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201601005
      Xia, L. Q., Xia, Z. C., Zhang, C., et al., 1992.Differentiation Mechanism and Evolution of High Level Magma Reservoir from Xiangshan, China. Acta Petrologica Sinica, 8(3): 205-221(in Chinese with English abstract).
      Xie, G. F., Yao, Y. J., Hu, Z. H., et al., 2014. Distribution Feature of Uranium Deposit in the West of Xiangshan Volcanic Basin. Uranium Geology, 6:328-334 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz201406002
      Xu, Q. S., Wei, Y. W., Huang, A. J., et al., 2014. Geochemical Features, Zircon U-Pb Ages and Relationship to Pb-Zn Mineralization of the Subvolcanic Rocks in Lizikeng Volcanic Basin, Shangrao, Jiangxi. Geological Review, 60(4):933-944(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201404023
      Yang, S. Y., Jiang, S. Y., Jiang, Y. H., et al., 2010. Zircon U-Pb Geochronology, Hf Isotopic Composition and Geological Implications of the Rhyodacite and Rhyodacitic Porphyry in the Xiangshan Uranium Ore Field, Jiangxi Province, China. Science China Earth Sciences, 53(10): 1411-1426(in Chinese with English abstract). doi: 10.1007/s11430-010-4058-0
      Yang, S. Y., Jiang, S. Y., Jiang, Y. H., et al., 2011. Geochemical, Zircon U-Pb Dating and Sr-Nd-Hf Isotopic Constraints on the Age and Petrogenesis of an Early Cretaceous Volcanic-Intrusive Complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1/2): 21-48(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e542e2ab04e6482902ba42f632a6da8
      Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2012. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of the Rhyolite Porphyry from the Zhoujiashan Deposit in Xiangshan Uranium Ore Field, Jiangxi Province, SE China. Acta Petrologica Sinica, 28(12): 3915-3928(in Chinese with English abstract).
      Yang, Q. K., Huang, Q. T., Sun, Q. Z., 2015. Geological Characteristics of Sulfur and Lead Isotope in the Xiangshan Ore Field. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 756-762 (in Chinese with English abstract).
      Yang, Q. K., Huang, Q. T., Luo, Y., H., et al., 2017. The Characteristics of Metallogenic Fluid Evolution of Lead-Zinc Polymetallic in Xiangshan Ore Field, Jiangxi Province. Science Technology and Engineering, 17(2): 1671-1815 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201705022
      Zhang, W.H., Chen, Z.Y., 1993. Fluid Inclusions. China University of Geosciences Press, Wuhan, 24-126(in Chinese with English abstract).
      Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
      Zhang, J. Q., Wang, D. H., Liu, S. B., et al., 2012. Geochronology and Isotopic Compositions of the Huangbi Lead-Zinc Deposits, Jiangxi, China. Acta Petrologica Sinica, 28(10): 3325-3333(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210019
      Zhang, W. L., Zou, M. Q., 2014. Analysis on Uranium-Polymetallic Mineralization Conditions of Xiangshan Ore Field. Uranium Geology, 30(3): 172-179(in Chinese with English abstract).
      陈正乐, 王永, 周永贵, 等, 2013.江西相山火山侵入杂岩体锆石SHRIMP定年及其地质意义.中国地质, 40(1):217-231. doi: 10.3969/j.issn.1000-3657.2013.01.015
      代堰锫, 余心起, 吴淦国, 等, 2011.北武夷蔡家坪铅锌矿床硫化物特征、矿床成因类型及成矿时代.地学前缘, 18(2):321-338. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102029
      范洪海, 凌洪飞, 沈渭洲, 等, 2001.相山火山-侵入杂岩Nd-Sr-Pb同位素地球化学特征.岩石学报, 17(3):395-402. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200103007
      罗平, 吴淦国, 张达, 等, 2009.北武夷生米坑铅锌矿床地质地球化学特征与成因探讨.地质力学学报, 15(4):349-362. doi: 10.3969/j.issn.1006-6616.2009.04.004
      刘军港, 李子颖, 聂江涛, 2017.相山深部铅锌多金属矿化S同位素特征及其地质意义.地质论评, 63(增刊):237-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9146553
      毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003
      毛景文, 谢桂青, 袁顺达, 等, 2011.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报, 85(5):636-658. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201105004
      吴仁贵, 1999.相山地区如意亭剖面火山建造特征.华东地质学院学报, 22(3):201-208.
      吴志坚, 胡志华, 2014.相山矿田牛头山铀矿床铀-多金属成矿地质特征及找矿方向.世界核地质科学, 31(2):89-94. doi: 10.3969/j.issn.1672-0636.2014.02.005
      王勇剑, 2015.相山花岗斑岩和中基性脉岩特征及其与铀成矿关系(硕士学位论文).北京: 核工业北京地质研究院.
      王健, 聂江涛, 郭建, 等, 2016.江西相山矿田深部多金属矿化特征.地质与勘探, 52(1):47-59. doi: 10.3969/j.issn.1001-1986.2016.01.009
      夏林圻, 夏祖春, 张诚, 等, 1992.相山高位岩浆房分异机制和演化.岩石学报, 8(3):205-221. doi: 10.3321/j.issn:1000-0569.1992.03.001
      谢国发, 姚亦军, 胡志华, 等, 2014.相山火山盆地西部铀矿床分布特征.铀矿地质, 30(6):329-334. http://d.old.wanfangdata.com.cn/Periodical/ykdz201406002
      徐庆胜, 魏英文, 黄安杰, 等, 2014.江西上饶梨子坑火山盆地潜火山岩地球化学特征、锆石U-Pb年龄及其与铅锌矿成矿关系.地质论评, 60(4):933-944. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404023
      杨水源, 蒋少涌, 姜耀辉, 等, 2010.江西相山流纹英安岩和流纹英安斑岩锆石U-Pb年代学和Hf同位素组成及其地质意义.中国科学:地球科学, 40(8):953-969. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201008001
      杨水源, 蒋少涌, 赵葵东, 等, 2012.江西相山铀矿田邹家山矿床中流纹斑岩的锆石U-Pb年代学、岩石地球化学与Sr-Nd-Hf同位素组成.岩石学报, 28(12):3915-3928. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212010
      杨庆坤, 黄强太, 孙清钟, 2015.江西相山矿田硫铅同位素地球化学特征.矿物岩石地球化学通报, 34(4):756-762. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201504015
      杨庆坤, 黄强太, 罗勇, 等, 2017.江西相山铀矿田深部铅锌矿成矿流体演化特征.科学技术与工程, 17(5):132-141. doi: 10.3969/j.issn.1671-1815.2017.05.022
      张文淮, 陈紫英, 1993.流体包裹体地质学.武汉:中国地质大学出版社, 24-126.
      张家菁, 王登红, 刘善宝, 等, 2012.江西省铅山县篁碧铅锌矿区同位素年代学和稳定同位素组成.岩石学报, 28(10):3325-3333. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210019
      张万良, 邹茂卿, 2014.相山矿田铀多金属成矿条件分析.铀矿地质, 30(3):172-179. doi: 10.3969/j.issn.1000-0658.2014.03.008
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (4648) PDF downloads(705) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return