• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Ruan Bing, Luo Biji, Zhang Hongfei, Guo Liang, Xu WangChun, Zhao Xinfu, Zhang Wen, Guo Jingliang, 2019. Magma Mixing of the Eocene Quxu Batholith from the Gangdese Magmatic Belt, South Tibet: Evidence from Cathodoluminescence Characteristics and Composition Changes of Plagioclase. Earth Science, 44(6): 1834-1848. doi: 10.3799/dqkx.2018.397
    Citation: Ruan Bing, Luo Biji, Zhang Hongfei, Guo Liang, Xu WangChun, Zhao Xinfu, Zhang Wen, Guo Jingliang, 2019. Magma Mixing of the Eocene Quxu Batholith from the Gangdese Magmatic Belt, South Tibet: Evidence from Cathodoluminescence Characteristics and Composition Changes of Plagioclase. Earth Science, 44(6): 1834-1848. doi: 10.3799/dqkx.2018.397

    Magma Mixing of the Eocene Quxu Batholith from the Gangdese Magmatic Belt, South Tibet: Evidence from Cathodoluminescence Characteristics and Composition Changes of Plagioclase

    doi: 10.3799/dqkx.2018.397
    • Received Date: 2018-09-30
    • Publish Date: 2019-06-15
    • As the main rock-forming mineral, plagioclase is an effective tool for studying petrogenesis, magma evolution and magma mixing. The cathodoluminescence image, electron probe micro-analysis and LA-ICP-MS composition analysis were carried out for the plagioclase from the granodiorite, monzogranite, diorite dykes and mafic microgranular enclaves (MMEs) in the Quxu batholith in the Gangdese magmatic belt, which can reveal the formation mechanisms and relative magma evolution process of plagioclase complex zoning. The cathodoluminescence images of the plagioclase from the Quxu batholith shows that their color displays a corresponding relationship with the An value. With the decreasing with the An values, the colors are green, blue and dark gray or dark red in turn. The plagioclases have obvious three types of zoning:patchy zonation, sieve texture and oscillatory zoned. The An values of plagioclase from the Quxu granodiorite and monzonite have similar ranges (20-55), while the An values in diorite dikes and MMEs vary widely (25-85), all indicating that the Quxu batholith has undergone a complex opening process. Insitu trace elements analyses show that the granodiorite has similar Sr content (600×10-6-1 100×10-6) with the diorite dykes and MMEs; the Sr content of monzogranite (1 000×10-6-2 400×10-6) is higher than the granodiorite, diorite dykes and MMEs. The above studies show that:the green luminescence of cores and mantle in granodiorite is the result of the mixing of the intermediate magma and felsic magma; the high Sr content of monzogranite is considered to be derived from a Sr-enriched melt. The above studies show that the complex zonings of the plagioclase are the result of the injection of mafic magma into felsic magma. The core of sieve texture plagioclase in diorite vein and MMEs could be xenocrystals, which are captured from the host rocks.

       

    • loading
    • Blundy, J. D., Shimizu, N., 1991. Trace Element Evidence for Plagioclase Recycling in Calc-Alkaline Magmas. Earth and Planetary Science Letters, 102(2):178-197. https://doi.org/10.1016/0012-821x(91)90007-5
      Blundy, J.D., Wood, B.J., 1991.Crystal-Chemical Controls on the Partitioning of Sr and Ba between Plagioclase Feld-spar, Silicate Melts, and Hydrothermal Solutions.Geochi-mica et Cosmochimica Acta, 55(1):193-209. https://doi.org/10.1016/0016-7037(91)90411-w
      Browne, B. L., Eichelberger, J. C., Patino, L. C., et al., 2006.Magma Mingling as Indicated by Texture and Sr/Ba Ra-tios of Plagioclase Phenocrysts from Unzen Volcano, SW Japan.Journal of Volcanology and Geothermal Re-search, 154(1-2):103-116. https://doi.org/10.1016/j.jvolgeores.2005.09.022
      Castro, A., 2001. Plagioclase Morphologies in Assimilation Experiments. Implications for Disequilibrium Melting in the Generation of Granodiorite Rocks. Mineralogy and Petrology, 71(1-2):31-49. https://doi.org/10.1007/s007100170044
      Castro, A., Patiño Douce, A. E., Corretgé, L. G., et al., 1999.Origin of Peraluminous Granites and Granodiorites, Iberi-an Massif, Spain:An Experimental Test of Granite Petro-genesis.Contributions to Mineralogy and Petrology, 135(2-3):255-276. https://doi.org/10.1007/s004100050511
      Chen, G. C., Pei, X. Z., Li, R. B., et al., 2017. Components of the Plagioclase of Granitic Batholith in Xiangjiananshan in the Eastern Section of East Kunlun and Their Implica-tions for Magma Evolution and Mixing Effect.Acta Geo-logica Sinica, 91(12):2651-2666(in Chinese with Eng-lish abstract).
      Chen, G.C., Pei, X.Z., Li, R.B., et al., 2018.Magma Mixing in Halagatu Granitic Batholith from Eastern Part of the East Kunlun Orogenic Belt:Constraints from Lithology and Mineralogy.Earth Science, 43(9):3200-3217(in Chi-nese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809020
      Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009.The Nature and Timing of Crustal Thickening in Southern Tibet:Geo-chemical and Zircon Hf Isotopic Constraints from Post-collisional Adakites. Tectonophysics, 477(1-2):36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      Coote, A. C., Shane, P., 2016. Crystal Origins and Magmatic System beneath Ngauruhoe Volcano (New Zealand) Re-vealed by Plagioclase Textures and Compositions. Lith-os, 260:107-119. https://doi.org/10.1016/j.lith-os.2016.05.017
      Ginibre, C., Wörner, G., 2007. Variable Parent Magmas and Recharge Regimes of the Parinacota Magma System (N. Chile) Revealed by Fe, Mg and Sr Zoning in Plagioclase.Lithos, 98(1-4):118-140. https://doi.org/10.1016/j.lithos.2007.03.004
      Ginibre, C., Wörner, G., Kronz, A., 2002.Minor-and Trace-El-ement Zoning in Plagioclase:Implications for Magma Chamber Processes at Parinacota Volcano, Northern Chile.Contributions to Mineralogy and Petrology, 143(3):300-315. https://doi.org/10.1007/s00410-002-0351-z
      Higgins, M.D., 2017.Quantitative Investigation of Felsic Rock Textures Using Cathodoluminescence Images and Other Techniques. Lithos, 277:259-268. https://doi.org/10.1016/j.lithos.2016.05.006
      Huang, Y., Zhao, Z.D., Zhang, F.Q., et al., 2010.Geochemis-try and Implication of the Gangdese Batholiths from Ren-bu and Lhasa Areas in Southern Gangdese, Tibet. Acta Petrologica Sinica, 26(10):3131-3142(in Chinese with English abstract).
      Humphreys, M.C.S., Blundy, J.D., Sparks, R.S.J., 2006.Mag-ma Evolution and Open-System Processes at Shiveluch Volcano:Insights from Phenocryst Zoning.Journal of Pe-trology, 47(12):2303-2334.
      Jeffery, A.J., Gertisser, R., Troll, V.R., et al., 2013.The Pre-Eruptive Magma Plumbing System of the 2007-2008 Dome-Forming Eruption of Kelut Volcano, East Java, In-donesia.Contributions to Mineralogy and Petrology, 166(1):275-308. https://doi.org/10.1007/s00410-013-0875-4
      Ji, W.Q., Wu, F.Y., Liu, C.Z., et al., 2009.Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science China:Earth Sciences, 52(9):1240-1261. doi: 10.1007/s11430-009-0131-y
      Jiang, W., Mo, X.X., Zhao, C.H., et al., 1999.Geochemistry of Granitoid and Its Mafic Microgranular Enclave in Gang-dise Belt, Qinghai-Xizang Plateau.Acta Petrologica Sini-ca, 15(1):89-97(in Chinese with English abstract).
      Lai, Y., 1995. Application of Cathodoluminescene to Mineral-ization and Lithogenesis Studying.Acta Scientiarum Nat-uralium Universitatis Pekinensis, 31(5):631-638(in Chi-nese with English abstract).
      Landi, P., Métrich, N., Bertagnini, A., et al., 2004. Dynamics of Magma Mixing and Degassing Recorded in Plagio-clase at Stromboli (Aeolian Archipelago, Italy).Contribu-tions to Mineralogy Petrology, 147(5):629-631. https://doi.org/10.1007/s00410-004-0555-5
      Li, S.R., Sun, L., Zhang, H.F., 2006.Magma Mixing Genesis of the Qushui Collisional Granitoids, Tibet, China:Evi-dences from Genetic Mineralogy. Acta Petrologica Sini-ca, 22(4):884-894 (in Chinese with English abstract).
      Li, Y.H., Huang, F., Yu, H.M., et al., 2016.Plagioclase Zon-ing in Submarine Volcano Kick'em Jenny, Lesser Antil-les Arc:Insights into Magma Evolution Processes in Oce-anic Arc Magma Chamber. Acta Petrologica Sinica, 32(2):605-616(in Chinese with English abstract).
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Lu, T.Y., He, Z.Y., Zhang, Z.M., et al., 2016.Magma Mixing of the Nyemo Post-Collisional Granite from the Gang-dese Magmatic Belt, Tibet:Evidence of Microstructures.Acta Petrologica Sinica, 32(12):3613-3623(in Chinese with English abstract).
      Ma, X. X., Meert, J. G., Xu, Z. Q., et al., 2017. Evidence of Magma Mixing Identified in the Early Eocene Caina Plu-ton from the Gangdese Batholith, Southern Tibet.Lithos, 278-281:126-139. https://doi.org/10.1016/j.lith-os.2017.01.020
      Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Pla-teau. Geological Journal of China Universities, 17(3):351-367(in Chinese with English abstract).
      Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Timing of Magma Mixing in the Gangdisê Magmatic Belt during the India-Asia Collision:Zircon SHRIMP U-Pb Dating.Acta Geologica Sinica(English Edition), 79(1):66-76. https://doi.org/10.1111/j.1755-6724.2005.tb00868.x
      Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290(in China with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Tempo-ral Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533(in China with English abstract).
      Pietranik, A., Koepke, J., 2009. Interactions between Dioritic and Granodioritic Magmas in Mingling Zones:Plagioclase Record of Mixing, Mingling and Subsolidus Interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland. Contributions to Mineralogy and Petrology, 158(1):17-36. https://doi.org/10.1007/s00410-008-0368-z
      Pietranik, A., Koepke, J., 2014. Plagioclase Transfer from a Host Granodiorite to Mafic Microgranular Enclaves:Di-verse Records of Magma Mixing.Mineralogy and Petrol-ogy, 108(5):681-694. https://doi.org/10.1007/s00710-014-0326-6
      Singer, B.S., Dungan, M.A., Layne, G.D., 1995.Textures and Sr, Ba, Mg, Fe, K and Ti Compositional Profiles in Vol-canic Plagioclase Clues to the Dynamics of Calc-Alka-line Magma Chambers.American Mineralogist, 80(7-8):776-798. https://doi.org/10.2138/am-1995-7-815
      Tsuchiyama, A., 1985. Dissolution Kinetics of Plagioclase in the Melt of the System Diopside-Albite-Anorthite, and Origin of Dusty Plagioclase in Andesites. Contributions to Mineralogy and Petrology, 89(1):1-16. https://doi.org/10.1007/bf01177585
      Viccaro, M., Giacomoni, P.P., Ferlito, C., et al., 2010.Dynam-ics of Magma Supply at Mt.Etna Volcano (Southern Ita-ly) as Revealed by Textural and Compositional Features of Plagioclase Phenocrysts. Lithos, 116(1-2):77-91. https://doi.org/10.1016/j.lithos.2009.12.012
      Wen, D. R., Liu, D. Y., Chung, S. L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Im-plications for Neotethyan Subduction in Southern Tibet.Chemical Geology, 252(3-4):191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
      Xie, L., Wang, D.Z., Wang, R.C., et al., 2004.Complex Zon-ing Texture in Plagioclases from the Quartz Diorite En-clave in the Putuo Granitic Complex, Zhejiang Province:Record of Magma Mixing. Acta Petrologica Sinica, 20(6):1397-1408(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200406008.htm
      Xu, H. F., Chen, T., 1987. Application of Cathodolumines-cence to Metamorphic and Granitic Rocks. Acta Petro-logica et Mineralogica, 6(3):279-284, 286(in Chinese with English abstract)
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28:211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zou, J. Q., Yu, H. X., Wang, B. D., et al., 2018. Petrogenesis and Geological Implications of Early Jurassic Granodio-rites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8):2795-2810(in Chinese with English abstract).
      陈国超, 裴先治, 李瑞保, 等, 2017.东昆仑东段香加南山花岗岩基斜长石成分组成与岩浆演化和混合作用.地质学报, 91(12):2651-2666. doi: 10.3969/j.issn.0001-5717.2017.12.005
      陈国超, 裴先治, 李瑞宝, 等, 2018.东昆仑东段哈拉尕吐花岗岩基混合作用:来自岩石学和矿物学约束.地球科学, 43(9):3200-3217. http://earth-science.net/WebPage/Article.aspx?id=3922
      黄玉, 赵志丹, 张凤琴, 等, 2010.西藏冈底斯仁布-拉萨一带花岗岩基的地球化学及其意义.岩石学报, 26(10):3131-3142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010024
      江万, 莫宣学, 赵崇贺, 等, 1999.西藏高原冈底斯中段花岗岩及其铁镁质微粒包体地球化学特征.岩石学报, 15(1):89-97.
      赖勇, 1995.阴极发光技术在成岩成矿作用研究中的应用.北京大学学报:自然科学版, 31(5):631-638.
      李胜荣, 孙丽, 张华峰, 2006.西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据.岩石学报, 22(4):884-894. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604012
      李原鸿, 黄方, 于慧敏, 等, 2016.加勒比海小安德烈岛弧Kick' em Jenny海底火山岩的斜长石成分环带:示踪大洋岛弧岩浆房的演化.岩石学报, 32(2):605-616.
      陆天宇, 贺振宇, 张泽明, 等, 2016.西藏冈底斯尼木后碰撞花岗岩的岩浆混合作用:显微结构证据.岩石学报, 32(12):3613-3623. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612004.htm
      莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3):351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
      莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      潘桂堂, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      谢磊, 王德滋, 王汝成, 等, 2004.浙江普陀花岗杂岩体中的石英闪长岩质包体:斜长石内部复杂环带研究与岩浆混合史纪录.岩石学报, 20(6):1397-1408.
      徐惠芬, 陈涛, 1987.阴极发光仪在变质岩和花岗岩类岩石中的应用.矿物岩石学杂志, 6(3):279-284, 286. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198703008.htm
      邹洁琼, 余红霞, 王保弟, 等, 2018.南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义.地球科学, 43(8):2795-2810. http://earth-science.net/WebPage/Article.aspx?id=3913
    • dqkx-44-6-1834-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (5903) PDF downloads(124) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return