• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 5
    May  2018
    Turn off MathJax
    Article Contents
    Sun Hongjuan, Liu Bo, Peng Tongjiang, Duan Jiaqi, 2018. Micromorphology and Structure Changes of Microcrystalline Graphite during Process of Oxidation and Expansion. Earth Science, 43(5): 1481-1488. doi: 10.3799/dqkx.2018.407
    Citation: Sun Hongjuan, Liu Bo, Peng Tongjiang, Duan Jiaqi, 2018. Micromorphology and Structure Changes of Microcrystalline Graphite during Process of Oxidation and Expansion. Earth Science, 43(5): 1481-1488. doi: 10.3799/dqkx.2018.407

    Micromorphology and Structure Changes of Microcrystalline Graphite during Process of Oxidation and Expansion

    doi: 10.3799/dqkx.2018.407
    • Received Date: 2017-10-01
    • Publish Date: 2018-05-15
    • In order to reveal the structure changes of microcrystalline graphite in the process of oxidation and expansion, the products were characterized by means of SEM-EDS, XRD, Raman and FTIR in this study. The results show that the interlayer distance of microcrystalline graphite oxide is enlarged and many functional groups including hydroxyl, carboxyl and epoxy groups are bonded on the graphene layer in the oxidation process. In addition, with the increase of oxidant (KMnO4), the space distance, structural defects and disorder of oxidized product increased gradually. After being expanded with high temperature, some of the oxygen-containing functional groups in the structure were removed, and the oxidized microcrystalline graphite was reduced partly. In addition, the structural defects and disorder degrees of expanded microcrystalline graphite reduced, and local sp2 regions were recovered. The expanded microcrystalline graphite particles contained abundant network pore structures with pore sizes of 2-5 nm.

       

    • loading
    • Acik, M., Lee, G., Mattevi, C., et al., 2011.The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy.The Journal of Physical Chemistry C, 115(40):19761-19781. https://doi.org/10.1021/jp2052618
      Blechta, V., Mergl, M., Drogowska, K., et al., 2016.NO2 Sensor with a Graphite Nanopowder Working Electrode.Sensors & Actuators B:Chemical, 226:299-304. https://doi.org/10.1016/j.snb.2015.11.130
      Bourlinos, A.B., Gournis, D., Petridis, D., et al., 2003.Graphite Oxide:Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids.Langmuir, 19(15):6050-6055. https://doi.org/10.1021/la026525h
      Duan, J.Q., Sun, H.J., Peng, T.J., 2017.Purification of Microcrystalline Graphite by Ultrasonic Treatment and Mixed Acid.Non-Metallic Mines, 40(1):58-61 (in Chinese with English abstract). doi: 10.1080/01496395.2016.1206933
      Fang, Q., Hong, H.L., Zhao, L.L., et al., 2018.Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes.Earth Science, 43(3):753-769 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.905
      Feng, M.Z., Peng, T.J., Sun, H.J., at al., 2016.Effect of Oxidation Degree on Structure and Cation Exchange Capacity of Graphite Oxide.Chinese Journal of Inorganic Chemistry, 32(3):427-433 (in Chinese with English abstract). doi: 10.1021/jp027500u
      Jian, Z.M., Liu, H.B., Kuang, J.C., et al., 2012.Natural Flake Graphite Modified by Mild Oxidation and Carbon Coating Treatment as Anode Material for Lithium Ion Batteries.Procedia Engineering, 27:55-62. https://doi.org/10.1016/j.proeng.2011.12.424
      Kim, H.M., Kim, K.M., Lee, K.H., et al., 2012.Nano-Bio Interaction between Graphite Oxide Nanoparticles and Human Blood Components.European Journal of Inorganic Chemistry, (32):5343-5349. https://doi.org/10.1002/ejic.201200587
      Kim, K.J., Lee, T.S., Kim, H.G., et al., 2014.A Hard Carbon/Microcrystalline Graphite/Carbon Composite with a Core-Shell Structure as Novel Anode Materials for Lithium-Ion Batteries.Electrochimica Acta, 135(22):27-34. https://doi.org/10.1016/j.electacta.2014.04.171
      Kuan, C.F., Tsai, K.C., Chen, C.H., et al., 2012.Preparation of Expandable Graphite via H2O2-Hydrothermal Process and Its Effect on Properties of High-Density Polyethylene Composites.Polymer Composites, 33(6):872-880. https://doi.org/10.1002/pc.22224
      Lin, Y.X., Huang, Z.H., Yu, X.L., et al., 2014.Mildly Expanded Graphite for Anode Materials of Lithium Ion Battery Synthesized with Perchloric Acid.Electrochimica Acta, 116(2):170-174. https://doi.org/10.1016/j.electacta.2013.11.057
      Malliga, T.V., Rajasekhar, R.V.J., 2017.Preparation and Characterization of Nanographite-and Cuo-Based Absorber and Performance Evaluation of Solar Air-Heating Collector.Journal of Thermal Analysis & Calorimetry, 129(1):233-240. https://doi.org/10.1007/s10973-017-6155-1
      McAllister, M.J., Li, J.L., Adamson, D.H., et al., 2007.Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite.Chemistry of Materials, 19(18):4396-4404. https://doi.org/10.1021/cm0630800
      Pang, X.Y., Tian, Y., Weng, M.Q., 2015.Preparation of Expandable Graphite with Silicate Assistant Intercalation and Its Effect on Flame Retardancy of Ethylene Vinyl Acetate Composite.Polymer Composites, 36(8):1407-1416. https://doi.org/10.1002/pc.23047
      Park, S., Lee, K.S., Bozoklu, G., et al., 2008.Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking.ACS Nano, 2(3):572-578. https://doi.org/10.1021/nn700349a
      Park, T.H., Yeo, J.S., Seo, M.H., et al., 2013.Enhancing the Rate Performance of Graphite Anodes through Addition of Natural Graphite/Carbon Nanofibers in Lithium-Ion Batteries.Electrochimica Acta, 93:236-240. https://doi.org/10.1016/j.electacta.2012.12.124
      Pielichowska, K., Bieda, J., Szatkowski, P., 2016.Polyurethane/Graphite Nano-Platelet Composites for Thermal Energy Storage.Renewable Energy, 91:456-465. https://doi.org/10.1016/j.renene.2016.01.076
      Saji, J., Khare, A., Mahapatra, S.P., 2015.Impedance and Dielectric Spectroscopy of Nano-Graphite Reinforced Silicon Elastomer Nanocomposites.Fibers & Polymers, 16(4):883-893. https://doi.org/10.1007/s12221-015-0883-2
      She, Z., Yang, F., Liu, W., et al., 2016.The Termination and Aftermath of the Lomagundi-Jatuli Carbon Isotope Excursions in the Paleoproterozoic Hutuo Group, North China.Journal of Earth Science, 27(2):297-316. https://doi.org/10.1007/s12583-015-0654-4
      Shen, K., Huang, Z.H., Hu, K.X., et al., 2015.Advantages of Natural Microcrystalline Graphite Filler over Petroleum Coke in Isotropic Graphite Preparation.Carbon, 90:197-206. https://doi.org/10.1016/j.carbon.2015.03.068
      Strom, T.A., Dillon, E.P., Hamilton, C.E., et al., 2010.Nitrene Addition to Exfoliated Graphene:A One-Step Route to Highly Functionalized Graphene.Chemical Communications, 46(23):4097-4099. https://doi.org/10.1039/C001488E
      Wang, J., Huang, J., Yan, R., et al., 2015.Graphene Microsheets from Natural Microcrystalline Graphite Minerals:Scalable Synthesis and Unusual Energy Storage.Journal of Materials Chemistry A, 3(6):3144-3150. https://doi.org/10.1039/C4TA06332E
      Wang, J.J., Li, G.Z., Feng, L.J., et al., 2017.Nano-Graphite Controlling Properties of Novel Composites with Damping-Absorption Functions and Storage-Loss Behaviors:Nano-Graphite/Pzt-Pmn-Pnn/Rtv.Current Applied Physics, 17(2):130-136. https://doi.org/10.1016/j.cap.2016.11.019
      Xian, H.Y., Peng, T.J., Sun, H.J., et al., 2015.Mineralogical Characteristics of Some Typical Graphite Samples in China.Acta Mineralogica Sinica, 35(3):395-405(in Chinese with English abstract). http://www.journalssystem.com/ppmp/Mineralogical-characteristics-of-metallurgical-dust-in-the-vicinity-of-Glogow,79500,0,2.html
      Xian, H.Y., Peng, T.J., Sun, H.J., et al., 2015.Preparation, Characterization and Supercapacitive Performance of Graphene Nanosheets from Microcrystalline Graphite.Journal of Materials Science Materials in Electronics, 26(1):242-249. https://doi.org/10.1007/s10854-014-2391-3
      Xu, L.L., Jin, Z.M., Mei, S.H., 2017.Deformation-DIA Coupled with Synchrotron X-Ray Diffraction and Its Applications to Deformation Experiments of Minerals at High Temperature and High Pressure.Earth Science, 42(6):974-989 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.078
      Ying, Z.R., Lin, X.M., Qi, Y., et al., 2008.Preparation and Characterization of Low-Temperature Expandable Graphite.Materials Research Bulletin, 43(10):2677-2686. https://doi.org/10.1016/j.materresbull.2007.10.027
      Zhang, B., Li, F., Wu, T., et al., 2015.Adsorption of P-Nitrophenol from Aqueous Solutions Using Nanographite Oxide.Colloids & Surfaces A:Physicochemical & Engineering Aspects, 464:78-88. https://doi.org/10.1016/j.colsurfa.2014.10.020
      Zhang, F.S., Zhao, Q., Yan, X., et al., 2016.Rapid Preparation of Expanded Graphite by Microwave Irradiation for the Extraction of Triazine Herbicides in Milk Samples.Food Chemistry, 197:943-949. https://doi.org/10.1016/j.foodchem.2015.11.056
      段佳琪, 孙红娟, 彭同江, 2017.超声-混酸法提纯微晶石墨.非金属矿, 40(1):58-61. http://www.cnki.com.cn/Article/CJFDTotal-TSJS201405009.htm
      方谦, 洪汉烈, 赵璐璐, 等, 2018.风化成土过程中自生矿物的气候指示意义.地球科学, 43(3):753-769. http://www.earth-science.net/WebPage/Article.aspx?id=3766
      冯明珠, 彭同江, 孙红娟, 等, 2016.氧化程度对氧化石墨结构与阳离子交换容量的影响.无机化学学报, 32(3):427-433. doi: 10.11862/CJIC.2016.047
      鲜海洋, 彭同江, 孙红娟, 等, 2015.我国若干典型石墨矿山石墨的矿物学特征.矿物学报, 35(3):395-405. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwxb201503017
      许丽丽, 金振民, Mei, S.H., 2017.D-DIA装置与同步辐射源结合技术及其在矿物高温高压变形实验中的应用.地球科学, 42(6):974-989. http://www.earth-science.net/WebPage/Article.aspx?id=3591
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(3)

      Article views (6368) PDF downloads(70) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return