• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 5
    May  2018
    Turn off MathJax
    Article Contents
    Sun Yan, Ju Yiwen, Huang Cheng, Zhou Wei, Chao Hongtai, Wang Zhicai, 2018. Representation of H Odé Shear Deformation Theory at Nanoscale. Earth Science, 43(5): 1518-1523. doi: 10.3799/dqkx.2018.410
    Citation: Sun Yan, Ju Yiwen, Huang Cheng, Zhou Wei, Chao Hongtai, Wang Zhicai, 2018. Representation of H Odé Shear Deformation Theory at Nanoscale. Earth Science, 43(5): 1518-1523. doi: 10.3799/dqkx.2018.410

    Representation of H Odé Shear Deformation Theory at Nanoscale

    doi: 10.3799/dqkx.2018.410
    • Received Date: 2017-10-15
    • Publish Date: 2018-05-15
    • Generally speaking, a rock is broken by shearing action or tensile force, in that case, why can we find some fracture structures perpendicular to the pressure direction? It can be solved through H Odé shear deformation theory. In plastic (or viscous-elastic) deformation, there is a velocity discontinuity which may be gained from a yield condition due to a medium differentiation, and thus the medium can just shear slip along the characteristic planes with an equal velocity. This theory is also called the plastic shearing criteria, and it was firstly verified from a macroscopic-mesoscopic mechanics representation, including the fracture planes in compressive zone, extreme point rupture of Griffith crack under normal press, and cataclastic flow in vertical pressure. Furthermore, high temperature and high pressure (HT/HP) experiment to granite samples was carried out, and the thin shells of crack surfaces, which are perpendicular to the axle load, were taken for the SEM determination. Then the micro/nanosized phenomena observed in crack surfaces with H Odé mechanics representation are compared with the textures of general shearing yield function from three aspects. (1) Viscous-elastic deformation:the experimental specimens passed HT/HP are more likely to produce a plastic compactive volumetric flow, invloving not only viscous deformation but also elastic one. Consequently, the specimens can exhibit effects of nano-coating and nano-layering. (2) Nanosized texture:nanosized grain (with diameter 60-80 nm) can turn into single nanoparticle-nanoline-nanolayer texture, and aggregate grains may be subdivided into granular, linear granular and schistose granular textures, etc. (3) Ordered fabrication:though preferred orientations of the granular flow and streak flow in H Odé shear fractures belong to a weaker scale than common shearing, their yield characteristics are entirely corresponding with the latter from comprehensive analysis. It is suggested that H Odé shear theory can be applied to research some few unconventional deformation phenomena, and it can offer a new perspective for nanogeology researches.

       

    • loading
    • Aydin, A., Borja, R. I., Eichhubl, P., 2006.Geological and Mathematical Framework for Failure Modes in Granular Rock.Journal of Structural Geology, 28(1):83-98. https://doi.org/10.1016/j.jsg.2005.07.008
      Berka, L., 1982.On Stress Distribution in a Structure of Polycrystals.Journal of Materials Science, 17(5):1508-1512. doi: 10.1007/BF00752267
      Cashman, S.M., Baldwin, J.N., Cashman, K.V., et al., 2007.Microstructures Developed by Coseismic and Aseismic Faulting in Near-Surface Sediments, San Andreas Fault, California.Geology, 35(7):611-614. https://doi.org/10.1130/G23545A.1
      Feng, D., 1975.Physics of Metals.Science Press, Beijing, 623-822 (in Chinese).
      Griffith, A.A., 1921.The Phenomena of Rupture and Flow in Solids.Philosophical Transactions of the Royal Society of London.Containing Papers of a Mathematical or Physical Character (Series A), 221:163-198. https://www.wenkuxiazai.com/doc/194f4b067e21af45b307a872-2.html
      Hills, E.L., 1961.Elements of Structural Geology.Chapman and Hall Ltd., London, 95-97. https://doi.org/10.1007/978-94-009-5843-2
      Hochella, M.F., 2002.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. https://doi.org/10.1016/S0012-821X(02)00818-X
      Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001
      Lajtai, E.Z., 1971.A Theoretical and Experimental Evaluation of the Griffith Theory of Brittle Fracture.Tectonophysics, 11(2):129-156. https://doi.org/10.1016/0040-1951(71)90060-6
      Lu, X.C., Sun, Y., Shu, L.S., et al., 2005.Cataclastic Rheology of Carbonate Rocks.Science China Earth Sciences, 48(8):1227-1233. doi: 10.1360/04yd0085
      Odé, H., 1960.Memoir.Geology Society America, 79:293-322. doi: 10.1130/MEM79
      Paggi, M., Reinoso, J., 2015.An Anisotropic Large Displacement Cohesive Zone Model for Fibrillar and Crazing Interfaces.International Journal of Solids and Structures, 69:106-120. https://doi.org/10.1016/j.ijsolstr.2015.04.042
      Reiner, M., Leaderman, H., 1960.Deformation, Strain, and Flow.Physics Today, 13:47. https://doi.org/10.1063/1.3057119
      Shen, B.Y., Liu, B., Liu, H.L., et al., 2016.Xiaomei Ductile Shear Zone on Hainan Island in a Nanoscale Perspective.Earth Science, 41(9):1489-1498 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.504
      Sun, Y., Han, K.C., 1985.Division of Fractured Tectonic Zone.Science Press, Beijing, 1-163 (in Chinese).
      Sun, Y., Jiang, S.Y., Wei, Z., et al., 2013.Nano-Coating Texture on the Shear Slip Surface in Rocky Materials.Advanced Materials Research, 669:108-114. https://doi.org/10.4028/www.scientific.net/AMR.669.108
      Sun, Y., Jiang, S.Y., Zhou, W., et al., 2014.Mechanical Analysis and Identification Markings of Nanoparticle Distribution in Narrow Friction Zones.Trans.Tech.Publications, 924:312-318. https://doi.org/10.4028/www.scientific.net/AMR.924.312
      Sun, Y., Lu, X.C., Zhang, X.H., et al., 2008.Nano-Texture of Penetrative Foliation in Metamorphic Rocks.Science China Earth Sciences, 51(12):1750. https://doi.org/10.1007/s11430-008-0138-9
      Sun, Y., Shen, X.Z., Gou, F.Y., 1986.Observation and Experiments on the H Odé Shearing Deformation.Journal of Guilin College of Geology, 6(4):347-351 (in Chinese with English abstract). http://eprints.whiterose.ac.uk/109369/
      Sun, Y., Yang, S.F., Zhang, Q.L., et al., 1992.Dissipative Structures of Rock-and Ore-Forming Systems in Faults.Chinese Journal of Geochemistry, 11(2):121-132. https://doi.org/10.1007/BF02871999
      Thorkelson, D.J., Breitsprecher, K., 2005.Partial Melting of Slab Window Margins:Genesis of Adakitic and Non-Adakitic Magmas.Lithos, 79(1):25-41. https://doi.org/10.1016/j.lithos.2004.04.049
      Viti, C., Hirose, T., 2009.Dehydration Reactions and Micro/Nanostructures in Experimentally-Deformed Serpentinites.Contributions to Mineralogy and Petrology, 157(3):327-338. https://doi.org/10.1007/s00410-008-0337-6
      Wang, P.F., Jiang, Z.X., Li, Z., et al., 2017.Micro-Nano Pore Structure Characteristics in the Lower Cambrian Niutitang Shale, Northeast Chongqing.Earth Science, 42(7):1147-1156 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.093
      Wang, X.G., Hu, B., Tang, H.M., et al., 2016.A Constitutive Model of Granite Shear Creep under Moisture.Journal of Earth Science, 27(4):677-685. https://doi.org/10.1007/s12583V016-0709-1
      Yang, T.Q., Luo, W.B., Xu, P., et al., 2004.Viscoelastic Theory and Application.Science Press, Beijing, 1-414 (in Chinese).
      Zhou, W., Jiang, S.Y., Ju, Y.W., et al., 2017.Studies on Micro/Nano-Sized Grinding Grains on Shear-Slip Surfaces in Rocks.Journal of Nanoscience and Nanotechnology, 17(9):7069-7075. https://doi.org/10.1166/jnn.2017.14527
      冯端, 1975.金属物理.北京:科学出版社, 623-822.
      琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html
      沈宝云, 刘兵, 刘海龄, 等, 2016.海南岛小妹韧性剪切带的纳米尺度.地球科学, 41(9):1489-1498. http://www.earth-science.net/WebPage/Article.aspx?id=3354
      孙岩, 韩克丛, 1985.断裂构造岩带的划分.北京:科学出版社, 1-163.
      孙岩, 沈修志, 勾佛仪, 1986.H Odé剪切变形的观察和实验研究.桂林冶金地质学院学报, 6(4):347-351. http://mall.cnki.net/magazine/Article/YYLX201303011.htm
      王朋飞, 姜振学, 李卓, 等, 2017.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征.地球科学, 42(7):1147-1156. http://www.earth-science.net/WebPage/Article.aspx?id=3603
      杨挺青, 罗文波, 徐平, 等, 2004.粘弹性理论与应用.北京:科学出版社, 1-414.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(2)

      Article views (4677) PDF downloads(26) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return