• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 9
    Sep.  2019
    Turn off MathJax
    Article Contents
    Sun Guoping, Wu Yunjun, Zheng Youye, Xu Jing, Li Miao, Wang Yanfeng, 2019. Ore-Forming Fluids Signature and Evolution in the Qiagong Fe Skarn Deposit of the Gangdese Belt, Tibet: Implications for Fe-Pb Mineralization. Earth Science, 44(9): 3007-3025. doi: 10.3799/dqkx.2018.564
    Citation: Sun Guoping, Wu Yunjun, Zheng Youye, Xu Jing, Li Miao, Wang Yanfeng, 2019. Ore-Forming Fluids Signature and Evolution in the Qiagong Fe Skarn Deposit of the Gangdese Belt, Tibet: Implications for Fe-Pb Mineralization. Earth Science, 44(9): 3007-3025. doi: 10.3799/dqkx.2018.564

    Ore-Forming Fluids Signature and Evolution in the Qiagong Fe Skarn Deposit of the Gangdese Belt, Tibet: Implications for Fe-Pb Mineralization

    doi: 10.3799/dqkx.2018.564
    • Received Date: 2017-11-06
    • Publish Date: 2019-09-15
    • There is still lack of research on the evolution of ore-forming fluids and ore-forming mechanism of the Qiagong Fe skarn deposit in the Gangdese Belt,especially the mineralization of the iron-lead ore body. We studied the homogenization temperature,salinity,laser Raman spectroscopy and H-O isotopic compositions of major minerals in different stages. The homogeneous temperatures of the fluid inclusions that in the prograde stage range from 400 to 550℃,and the salinities vary from 15.5% to 20.95% NaCl eqv. Besides,the salinity of S-type fluid inclusion in this stage is up to 56.5% NaCleqv. Both the vapor and the liquid phases in these fluid inclusions are H2O. The homogeneous temperatures of fluid inclusions during the retrograde stage range from 350℃ to 420℃,and the salinities are primarily concentrated in 14.1%-16.68% NaCleqv,partly in 2%-8% NaCleqv. However,the salinity of type-S inclusion is up to 55.8% NaCleqv. Both the vapor and the liquid phases in these fluid inclusions are H2O. In addition,the liquid phase is also rich in HCO3- and CO32-. The homogeneous temperatures of the fluid inclusions in quartzgalena stage are 238-343℃,corresponding to the salinities of 3.1%-13.9% NaCleqv. Additionally,the total homogenization temperatures of CO2-bearing three-phase fluid inclusions are 290-310℃,corresponding to the salinities of 1.6%-11.2% NaCl eqv. Lastly,during the quartz-calcite stage,the homogeneous temperatures and salinities of the fluid inclusions vary in 242-360℃ and 1.7%-11.8% NaCl eqv respectively. The component of liquid phase in fluid inclusion is dominated by H2O,as well as the vapor phase. The H-O isotopes show that the δDH2O and δ18OH2O are-106.4‰—-113.2‰ and 6.2‰-8.0‰ during the prograde stage,and -84.8‰—-130.1‰ and 2.7‰-5.5‰ during the retrograde stage,respectively. The δ18OH2O compositions in the retrograde stage are lower than those in the prograde stage. The δDH2O and δ18OH2O are -95.3‰—-103.8‰ and -1.6‰—-0.7‰ in the quartz-galena stage and -67.4‰—-101.0‰ and -0.8‰-0.6‰ in the quartz-calcite stage,respectively. These data indicate that the fluids evolved from high temperature,medium-high salinity to low temperature and low salinity. The ore-forming fluids are mainly derived from magma exsolution in skarn stage. The fluid immiscibility and wall-rock interaction during skarn stage are the main mechanisms of magnetite precipitation. Decreased pressure and temperature during quartz-galena stage might be the prime reasons for precipitation of galena.

       

    • loading
    • Ault, K. M., 2004. Sulfur and Lead Isotope Study of the EL Mochito Zn-Pb-Ag Deposit. Economic Geology, 99(6): 1223-1231. https://doi.org/10.2113/gsecongeo.99.6.1223
      Baker, T., Achterberg, E.V., Ryan, C. G., et al., 2004. Composition and Evolution of Ore Fluids in a Magmatic-Hydrothermal Skarn Deposit. Geology, 32(2): 117-120. https://doi.org/10.1130/g19950.1
      Baker, T., Lang, J. R., 2003. Reconciling Fluid Inclusion Types, Fluid Processes, and Fluid Sources in Skarns: An Example from the Bismark Deposit, Mexico. Mineralium Deposita, 38(4): 474-495. https://doi.org/10.1007/s00126-002-0306-3
      Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684. https://doi.org/10.1016/0016-7037(93)90378-a
      Chang, Z. S., Meinert, L. D., 2004. The Magmatic-Hydrothermal Transition—Evidence from Quartz Phenocryst Textures and Endoskarn Abundance in Cu-Zn Skarns at the Empire Mine, Idaho, USA. Chemical Geology, 210(1-4): 149-171. https://doi.org/10.1016/j.chemgeo.2004.06.018
      Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China: An Overview. Ore Geology Reviews, 31(1-4): 139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001
      Chen, Y.J., Li, N., 2009. Nature of Ore-Fluids of Intracontinental Intrusion-Related Hypothermal Deposits and its Difference from those in Island Arcs. Acta Petrologica Sinica, 25(10):2477-2508 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200910016
      Clayton, R. N., Rex, R. W., Syers, J. K., et al., 1972. Oxygen Isotope Abundance in Quartz from Pacific Pelagic Sediments. Journal of Geophysical Research, 77(21): 3907-3915. https://doi.org/10.1029/jc077i021p03907
      Collins, P. L. F., 1979. Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity. Economic Geology, 74(6): 1435-1444. https://doi.org/10.2113/gsecongeo.74.6.1435
      Ding, L., Kapp, P., Zhong, D.L., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061
      Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2005.A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks in the Lhünzhub Basin, Northern Lhasa, Tibet, China. Regional Geology of China, 24(6):549-557 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200506012
      Einaudi, M. T., Burt, D. M., 1982. Introduction: Terminology, Classification, and Composition of Skarn Deposits. Economic Geology, 77(4): 745-754. https://doi.org/10.2113/gsecongeo.77.4.745
      Fournier, R.O., 1992. The Influences of Depth of Burial and the Brittle-Ductile Transition on the Evolution of Magmatic Fluids. Geological Survey of Japan Report, 279: 57-59.
      Gao, S.B., 2015. Copper-Iron Polymetal Metallogenic Regularity and Election of Targennt Areas in the Western of Gangdise Metallogenic Belt, Tibet (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Gemmell, J. B., Zantop, H., Meinert, L. D., 1992. Genesis of the Aguilar Zinc-Lead-Silver Deposit, Argentina: Contact Metasomatic vs. Sedimentary Exhalative. Economic Geology, 87(8): 2085-2112. https://doi.org/10.2113/gsecongeo.87.8.2085
      Harris, A. C., Golding, S. D., 2002. New Evidence of Magmatic-Fluid-Related Phyllic Alteration: Implications for the Genesis of Porphyry Cu Deposits. Geology, 30(4): 335-338. https://doi.org/10.1130/0091-7613(2002)030 < 0335:neomfr > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0335:neomfr>2.0.co;2
      Hedenquist, J. W., Arribas, A., Reynolds, T. J., 1998. Evolution of an Intrusion-Centered Hydrothermal System: Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines. Economic Geology, 93(4): 373-404. https://doi.org/10.2113/gsecongeo.93.4.373
      Hedenquist, J. W., Lowenstern, J. B., 1994. The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 370(6490): 519-527. https://doi.org/10.1038/370519a0
      Hedenquist, J. W., Reyes, A. G., Simmons, S. F., et al., 1992. The Thermal and Geochemical Structure of Geothermal and Epithermal Systems: A Framework for Interpreting Fluid Inclusion Data. European Journal of Mineralogy, 4(5): 989-1016. https://doi.org/10.1127/ejm/4/5/0989
      Hedenquist, J.W., Richards, J.P., 1998. The Influence of Geochemical Techniques on the Development of Genetic Models for Porphyry Copper Deposits. Economic Geology, 10:235-256. doi: 10.1134-S1063776111060203/
      Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hou, Z.Q., Lu, Q.T., Wang, A.J., et al., 2003. Continental Collision and Related Metallogeny:A Case Study of Mineralization in Tibetan Orogen. Mineral Deposits, 22(4):319-333 (in Chinese with English abstract).
      Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2006.Early Processes and Tectonic Model for the Indian—Asian Continental Collision:Evidence from the Cenozoic Gangdese Igneous Rocks in Tibet. Acta Geologica Sinica, 80(9):1233-1248 (in Chinese with English abstract).
      Ishihara, S., Jin, M. S., Sasaki, A., 2000. Source Diversity of Ore Sulfur from Mesozoic-Cenozoic Mineral Deposits in the Korean Peninsula Region. Resource Geology, 50(4): 203-212. https://doi.org/10.1111/j.1751-3928.2000.tb00070.x
      Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet. Earth Science, 41(6):999-1015 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606007
      Li, Y.X., Xie, Y.L., Chen, W., et al., 2011.U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7):2023-2033 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107011
      Lu, H.Z., Fan, H.R., Li, P., et al., 2004. Fluid inclusions. Science Press, Beijing (in Chinese).
      Mao, C., Lü, X.B., Chen, C., et al., 2016.Characteristics and Metallogenic Significance of Melt-Fluid Inclusions of Shanshenfu Granite in the Hongyan Area, Inner Mongolia. Earth Science, 41(1):139-152 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201601011
      Megaw, P. K. M., Ruiz, J., Titley, S. R., 1988. High-Temperature, Carbonate-Hosted Ag-Pb-Zn(Cu) Deposits of Northern Mexico. Economic Geology, 83(8): 1856-1885. https://doi.org/10.2113/gsecongeo.83.8.1856
      Meinert, L.D., 1992. Skarns and Skarn Deposits. Geoscience Canada, 19(4): 145-162. http://d.old.wanfangdata.com.cn/Periodical/hbjzkjxyxb200901022
      Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World Skarn Deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, Colorado.
      Meinert, L. D., Hedenquist, J. W., Satoh, H., et al., 2003. Formation of Anhydrous and Hydrous Skarn in Cu-Au Ore Deposits by Magmatic Fluids. Economic Geology, 98(1): 147-156. https://doi.org/10.2113/gsecongeo.98.1.147
      Meinert, L. D., Hefton, K. K., Mayes, D., et al., 1997. Geology, Zonation, and Fluid Evolution of the Big Gossan Cu-Au Skarn Deposit, Ertsberg District, Irian Jaya. Economic Geology, 92(5): 509-534. https://doi.org/10.2113/gsecongeo.92.5.509
      Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001
      O'Neil, J.R., Taylor, H.P., 1969. Oxygen Isotope Equilibrium between Muscovite and Water. Journal of Geophysical Research, 74(25): 6012-6022. https://doi.org/10.1029/jb074i025p06012
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      Reed, M.H., Spycher, N.F., 1985. Boiling, Cooling, and Oxidation in Epithermal Systems: A Numerical Modeling Approach. Economic Geology, 1:249-272.
      She, H.Q., Feng, C.Y., Zhang, D.Q., et al., 2005.Characteristics and Metallogenic Potential of Skarn Copper-Lead-Zinc Polymetallic Deposits in Central Eastern Gangdese.Mineral Deposits, 24(5):508-520 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200505005
      Singoyi, B., Zaw, K., 2001. A Petrological and Fluid Inclusion Study of Magnetite-Scheelite Skarn Mineralization at Kara, Northwestern Tasmania: Implications for Ore Genesis. Chemical Geology, 173(1-3): 239-253. https://doi.org/10.1016/s0009-2541(00)00278-3
      Suzuoki, T., Epstein, S., 1976. Hydrogen Isotope Fractionation between OH-Bearing Minerals and Water. Geochimica et Cosmochimica Acta, 40(10): 1229-1240. https://doi.org/10.1016/0016-7037(76)90158-7
      Tang, J.X., Duo, J., Liu, H.F., et al., 2012. Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4):393-410 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201204002
      Tang, J.X., Wang, L.Q., Zheng, W.B., et al., 2014.Ore Deposits Metallogenic Regularity and Prospecting in the Eastern Section of the Gangdese Metallogenic Belt. Acta Geologica Sinica, 88(12):2545-2555 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412027
      Taylor, B.E., 1986. Magmatic Volatiles: Isotopic Variation of C, H, and S. Reviews in Mineralogy and Geochemistry, 16(1): 185-225.
      Taylor, H.P., Turi, B., 1976. High-18O Igneous Rocks from the Tuscan Magmatic Province, Italy. Contributions to Mineralogy and Petrology, 55(1): 33-54. https://doi.org/10.1007/bf00372753
      Wang, F.G., Li, G.M., Lin, F.C., et al., 2005.Ore Potential of Skarn-Type Ore Deposits in the Gangdise Metallogenic Belt, Tibet. Regional Geology of China, 24(4):378-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200504014
      Wang, X.L., Gu, X.X., Peng, Y.W., et al., 2016. Geological Features, Metallogenic Setting and Exploration Potential of the Skarn Fe-Cu Polymetallic Deposits in the Eastern Segment of the Boluokenu Mineralization Belt, Xinjiang. Acta Petrologica Sinica, 32(5):1315-1332 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605005
      Williams-Jones, A. E., Samson, I. M., Ault, K. M., et al., 2010. The Genesis of Distal Zinc Skarns: Evidence from the Mochito Deposit, Honduras. Economic Geology, 105(8): 1411-1440. https://doi.org/10.2113/econgeo.105.8.1411
      Wu, S., Zheng, Y. Y., Geng, R. R., et al., 2017. Geology, Fluid Inclusion and Isotope Constraints on Ore Genesis of the Post-Collisional Dabu Porphyry Cu-Mo Deposit, Southern Tibet. Ore Geology Reviews, 89: 421-440. https://doi.org/10.1016/j.oregeorev.2017.06.030
      Xie, Y.L., Li, Y.X., Chang, Z.S., et al., 2009. Magmatic Evolution and Characteristics of Magmatic Fluid in the Qiagong Porphyry System. Acta Geologica Sinica, 83(12):1869-1886 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200912006
      Xu, J., 2017. Metallogenic Mechanism and Model of the Paleogene Fe-Cu-Pb-Zn Skarn Deposits in Nyainqentanglha, Tibet (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Xu, J., Zheng, Y. Y., Sun, X., et al., 2016a. Geochronology and Petrogenesis of Miocene Granitic Intrusions Related to the Zhibula Cu Skarn Deposit in the Gangdese Belt, Southern Tibet. Journal of Asian Earth Sciences, 120: 100-116. https://doi.org/10.1016/j.jseaes.2016.01.026
      Xu, J., Zheng, Y. Y., Sun, X., et al., 2016b. Alteration and Mineralization at the Zhibula Cu Skarn Deposit, Gangdese Belt, Tibet. Ore Geology Reviews, 75: 304-326. https://doi.org/10.1016/j.oregeorev.2015.11.028
      Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3):339-356 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703003
      Zhai, Y.S., Yao, S.Z., Cai, K.Q., 2011. Mineral Deposits (3rd Edition). Geological Publishing House, Beijing (in Chinese).
      Zhao, H.F., Zhong, K.H., 2014.The Geologic Characteristic and Genesis of Qiagong's Skarn-Related Iron Deposit, Tibet, China. Sichuan Nonferrous Metals, (3):15-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scysjs201403003
      Zhao, Y.M., 2013.Main Genetic Types and Geological Characteristics of Iron-Rich Ore Deposits in China. Mineral Deposits, 32(4):686-705 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201304004
      Zhao, Y. M., Dong, Y. G., Li, D. X., et al., 2003. Geology, Mineralogy, Geochemistry, and Zonation of the Bajiazi Dolostone-Hosted Zn-Pb-Ag Skarn Deposit, ProvinceLiaoning, China. Ore Geology Reviews, 23(3-4): 153-182. https://doi.org/10.1016/s0169-1368(03)00034-9
      Zhao, Y.M., Feng, C.Y., Li, D.X., et al., 2017.New Progress in Prospecting for Skarn Deposits and Spatial-Teporal Distribution of Skarn Deposits in China. Mineral Deposits, 36(3):519-543 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201703001
      Zhao, Y.M., Li, D.X., 2003. Amphiboles in Skarn Deposits of China. Mineral Deposits, 22(4):345-359 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200304003
      Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015a. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet. Ore Geology Reviews, 70: 510-532. https://doi.org/10.1016/j.oregeorev.2015.04.004
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2015b. Metallogenesis and the Minerogenetic Series in the Gangdese Polymetallic Copper Belt. Journal of Asian Earth Sciences, 103: 23-39. https://doi.org/10.1016/j.jseaes.2014.11.036
      Zheng, Y. F., 1993. Calculation of Oxygen Isotope Fractionation in Hydroxyl-Bearing Silicates. Earth and Planetary Science Letters, 120(3/4): 247-263. https://doi.org/10.1016/0012-821x(93)90243-3
      Zheng, Y.F., Xu, B.L., Zhou, G.T., et al., 2000. Geochemical Studies of Stable Isotopes in Minerals. Earth Science Frontiers, 7(2):299-320 (in Chinese with English abstract).
      Zheng, Y.Y., Wang, B.S., Fan, Z.H., et al., 2002. Analysis of Tectonic Evolution in the Eastern Section of the Gangdise Mountains, tibet and the Metallogenic Potentialities of Copper Gold Poly Metal. Geological Science and Technology Information, 21(2):55-60 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200202012
      Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1):103-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200401018
      Zhou, Z.H., Liu, H.W., Chang, G.X., et al., 2011. Mineralogical Characteristics of Skarns in the Huanggang Sn-Fe Deposit of Inner Mongolia and Their Metallogenic Indicating Significance. Acta Petrologica et Mineralogica, 30(1):97-112 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201101009
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract).
      陈衍景, 李诺, 2009.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异.岩石学报, 25(10):2477-2508. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200910016
      董国臣, 莫宣学, 赵志丹, 等, 2005.拉萨北部林周盆地林子宗火山岩层序新议.地质通报, 24(6):549-557. doi: 10.3969/j.issn.1671-2552.2005.06.012
      高顺宝, 2015.西藏冈底斯西段铜铁多金属成矿作用与找矿方向(博士学位论文).武汉: 中国地质大学.
      侯增谦, 吕庆田, 王安建, 等, 2003.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. doi: 10.3969/j.issn.0258-7106.2003.04.001
      侯增谦, 莫宣学, 高永丰, 等, 2006.印度大陆与亚洲大陆早期碰撞过程与动力学模型——来自西藏冈底斯新生代火成岩证据.地质学报, 80(9):1233-1248. doi: 10.3321/j.issn:0001-5717.2006.09.001
      冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. doi: 10.3799/dqkx.2016.083
      李应栩, 谢玉玲, 陈伟, 等, 2011.西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义.岩石学报, 27(7):2023-2033. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107011
      卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社.
      毛晨, 吕新彪, 陈超, 等, 2016.内蒙古红彦镇地区山神府花岗岩熔融-流体包裹体特征及其成矿意义.地球科学, 41(1):139-152. doi: 10.3799/dqkx.2016.011
      莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      佘宏全, 丰成友, 张德全, 等, 2005.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析.矿床地质, 24(5):508-520. doi: 10.3969/j.issn.0258-7106.2005.05.005
      唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4):393-410. doi: 10.3975/cagsb.2012.04.02
      唐菊兴, 王立强, 郑文宝, 等, 2014.冈底斯成矿带东段矿床成矿规律及找矿预测.地质学报, 88(12):2545-2555. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412027
      王方国, 李光明, 林方成, 等, 2005.西藏冈底斯地区矽卡岩型矿床资源潜力初析.地质通报, 24(4):378-385. doi: 10.3969/j.issn.1671-2552.2005.04.014
      王新利, 顾雪祥, 彭义伟, 等, 2016.新疆博罗科努成矿带东段矽卡岩型铁铜多金属矿床:地质特征、成矿背景与找矿潜力.岩石学报, 32(5):1315-1332. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605005
      谢玉玲, 李应栩, Chang, Z.S., 等, 2009.西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征.地质学报, 83(12):1869-1886. doi: 10.3321/j.issn:0001-5717.2009.12.006
      徐净, 2017.西藏念青唐古拉古近纪矽卡岩型铁铜铅锌矿床成因机制与成矿模式(博士学位论文).武汉: 中国地质大学.
      杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. doi: 10.3799/dqkx.2017.026
      翟裕生, 姚书振, 蔡克勤, 2011.矿床学(第三版).北京:地质出版社.
      赵洪飞, 钟康惠, 2014.西藏恰功矽卡岩型铁矿床地质特征与成因分析.四川有色金属, (3):15-17. doi: 10.3969/j.issn.1006-4079.2014.03.003
      赵一鸣, 2013.中国主要富铁矿床类型及地质特征.矿床地质, 32(4):686-705. http://d.old.wanfangdata.com.cn/Periodical/kcdz201304004
      赵一鸣, 丰成友, 李大新, 等, 2017.中国矽卡岩矿床找矿新进展和时空分布规律.矿床地质, 36(3):519-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz201703001
      赵一鸣, 李大新, 2003.中国夕卡岩矿床中的角闪石.矿床地质, 22(4):345-359. doi: 10.3969/j.issn.0258-7106.2003.04.003
      郑永飞, 徐宝龙, 周根陶, 等, 2000.矿物稳定同位素地球化学研究.地学前缘, 7(2):299-320. doi: 10.3321/j.issn:1005-2321.2000.02.001
      郑有业, 王保生, 樊子珲, 等, 2002.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析.地质科技情报, 21(2):55-60. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200202012
      郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学, 29(1):103-108. http://www.earth-science.net/article/id/1334
      周振华, 刘宏伟, 常帼雄, 等, 2011.内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义.岩石矿物学杂志, 30(1):97-112. doi: 10.3969/j.issn.1000-6524.2011.01.009
      朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1):1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (7048) PDF downloads(54) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return