Citation: | Du Shuheng, Pang Shan, Chai Guangsheng, Wang He, Shi Yongmin, 2020. Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by "Umbrella Deconstruction" Method. Earth Science, 45(1): 276-284. doi: 10.3799/dqkx.2018.567 |
Alyafei, N., Mckay, T. J., Solling, T. I., 2016. Characterization of Petrophysical Properties Using Pore-Network and Lattice-Boltzmann Modelling:Choice of Method and Image Sub-Volume Size. Journal of Petroleum Science and Engineering, 145:256-265. https://doi.org/10.1016/j.petrol.2016.05.021
|
Arand, F., Hesser, J., 2017. Accurate and Efficient Maximal Ball Algorithm for Pore Network Extraction. Computers & Geosciences, 101:28-37. https://doi.org/10.1016/j.cageo.2017.01.004
|
Berrezueta, E., Kovacs, T., 2017. Application of Optical Image Analysis to the Assessment of Pore Space Evolution after CO2 Injection in Sandstones. A Case Study. Journal of Petroleum Science and Engineering, 159:679-690. https://doi.org/10.1016/j.petrol.2017.08.039
|
Dong, H., 2007. Micro-CT Imaging and Pore Network Extraction. Imperial College, London.
|
Du, S. H., 2019a. Prediction of Permeability and Its Anisotropy of Tight Oil Reservoir via Precise Pore-Throat Tortuosity Characterization and "Umbrella Deconstruction" Method. Journal of Petroleum Science and Engineering, 178:1018-1028. https://doi.org/10.1016/j.petrol.2019.03.009
|
Du, S. H., Shi, G. X., Yue, X. J., et al., 2019b. Imaging-Based Characterization of Perthite in the Upper Triassic Yanchang Formation Tight Sandstone of the Ordos Basin, China. Acta Geologica Sinica (English Edition), 93(2):373-385. https://doi.org/10.1111/1755-6724.13768
|
Du, S. H., Shi, Y. M., Zheng, X. J., et al., 2019c. Using "Umbrella Deconstruction & Energy Dispersive Spectrometer (UD-EDS)" Technique to Quantify the Anisotropic Elements Distribution of "Chang 7" Shale and Its Significance. Energy, in Press. https://doi.org/10.1016/j.energy.2019.116443
|
Du, S. H., Xu, F., Taskyn, A., et al., 2019d. Anisotropy Characteristics of Element Composition in Upper Triassic "Chang 8" Shale in Jiyuan District of Ordos Basin, China:Microscopic Evidence for the Existence of Predominant Fracture Zone. Fuel, 253:685-690. https://doi.org/10.1016/j.fuel.2019.05.031
|
Du, S. H., Pang, S., Shi, Y. M., 2018a. A New and More Precise Experiment Method for Characterizing the Mineralogical Heterogeneity of Unconventional Hydrocarbon Reservoirs. Fuel, 232:666-671. https://doi.org/10.1016/j.fuel.2018.06.012
|
Du, S. H., Pang, S., Shi, Y. M., 2018b. Quantitative Characterization on the Microscopic Pore Heterogeneity of Tight Oil Sandstone Reservoir by Considering both the Resolution and Representativeness. Journal of Petroleum Science and Engineering, 169:388-392. https://doi.org/10.1016/j.petrol.2018.05.058
|
Gundogar, A. S., Ross, C. M., Akin, S., et al., 2016. Multiscale Pore Structure Characterization of Middle East Carbonates. Journal of Petroleum Science and Engineering, 146:570-583. https://doi.org/10.1016/j.petrol.2016.07.018
|
Hajnos, M., Lipiec, J., Świeboda, R., et al., 2006. Complete Characterization of Pore Size Distribution of Tilled and Orchard Soil Using Water Retention Curve, Mercury Porosimetry, Nitrogen Adsorption, and Water Desorption Methods. Geoderma, 135:307-314. https://doi.org/10.1016/j.geoderma.2006.01.010
|
Hinai, A. A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution:A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8:1-13. https://doi.org/10.1016/j.juogr.2014.06.002
|
Huang, W. B., Lu, S. F., Hersi, O. S., et al., 2017. Reservoir Spaces in Tight Sandstones:Classification, Fractal Characters, and Heterogeneity. Journal of Natural Gas Science and Engineering, 46:80-92. https://doi.org/10.1016/j.jngse.2017.07.006
|
Jia, C. Z., 2017. Breakthrough and Significance of Unconventional Oil and Gas to Classical Petroleum Geology Theory. Petroleum Exploration and Development, 44(1):1-10. https://doi.org/10.1016/s1876-3804(17)30002-2
|
Kate, J. M., Gokhale, C. S., 2006. A Simple Method to Estimate Complete Pore Size Distribution of Rocks. Engineering Geology, 84(1-2):48-69. https://doi.org/10.1016/j.enggeo.2005.11.009
|
Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158:78-89. https://doi.org/10.1016/j.coal.2016.03.003
|
Krakowska, P., Puskarczyk, E., Jędrychowski, M., et al., 2018. Innovative Characterization of Tight Sandstones from Paleozoic Basins in Poland Using X-Ray Computed Tomography Supported by Nuclear Magnetic Resonance and Mercury Porosimetry. Journal of Petroleum Science and Engineering, 166:389-405. https://doi.org/10.1016/j.petrol.2018.03.052
|
Lai, J., Wang, G. W., Wang, Z. Y., et al., 2018. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Science Reviews, 177:436-457. https://doi.org/10.1016/j.earscirev.2017.12.003
|
Markussen, Ø., Dypvik, H., Hammer, E., et al., 2019. 3D Characterization of Porosity and Authigenic Cementation in Triassic Conglomerates/Arenites in the Edvard Grieg Field Using 3D Micro-CT Imaging. Marine and Petroleum Geology, 99:265-281. https://doi.org/10.1016/j.marpetgeo.2018.10.015
|
Munawar, M. J., Lin, C. Y., Cnudde, V., et al., 2018. Petrographic Characterization to Build an Accurate Rock Model Using Micro-CT:Case Study on Low-Permeable to Tight Turbidite Sandstone from Eocene Shahejie Formation. Micron, 109:22-33. https://doi.org/10.1016/j.micron.2018.02.010
|
Rabbani, A., Jamshidi, S., Salehi, S., 2014. An Automated Simple Algorithm for Realistic Pore Network Extraction from Micro-Tomography Images. Journal of Petroleum Science and Engineering, 123:164-171. https://doi.org/10.1016/j.petrol.2014.08.020
|
Silin, D. B., Jin, G., Patzek, T. W., 2003. Robust Determination of Pore Space Morphology in Sedimentary Rocks. Proceedings of SPE Annual Technical Conference and Exhibition, Denver.
|
Wang, P. F., Jiang, Z. X., Ji, W. M., et al., 2016. Heterogeneity of Intergranular, Intraparticle and Organic Pores in Longmaxi Shale in Sichuan Basin, South China:Evidence from SEM Digital Images and Fractal and Multifractal Geometries. Marine and Petroleum Geology, 72:122-138. https://doi.org/10.1016/j.marpetgeo.2016.01.020
|
Wu, Y. Q., Tahmasebi, P., Lin, C. Y., et al., 2019. A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based on SEM, MICP, NMR, and X-Ray CT Experiments. Marine and Petroleum Geology, 103:12-28. https://doi.org/10.1016/j.marpetgeo.2019.02.003
|
Xiao, D. S., Lu, S. F., Lu, Z. Y., et al., 2016. Combining Nuclear Magnetic Resonance and Rate-Controlled Porosimetry to Probe the Pore-Throat Structure of Tight Sandstones. Petroleum Exploration and Development, 43(6):1049-1059. https://doi.org/10.1016/s1876-3804(16)30122-7
|
Zheng, S. J., Yao, Y. B., Liu, D. M., et al., 2018. Characterizations of Full-Scale Pore Size Distribution, Porosity and Permeability of Coals:A Novel Methodology by Nuclear Magnetic Resonance and Fractal Analysis Theory. International Journal of Coal Geology, 196:148-158. https://doi.org/10.1016/j.coal.2018.07.008
|