• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Li Hua, He Youbin, Feng Bin, Hao Ting, Su Shuaiyi, Zhang Can, Wang Jixin, 2018. Type and Evolution of Deep-Water Channel Deposits of Ordovician Lashizhong Formation in Western Margin of Ordos Basin. Earth Science, 43(6): 2149-2159. doi: 10.3799/dqkx.2018.568
    Citation: Li Hua, He Youbin, Feng Bin, Hao Ting, Su Shuaiyi, Zhang Can, Wang Jixin, 2018. Type and Evolution of Deep-Water Channel Deposits of Ordovician Lashizhong Formation in Western Margin of Ordos Basin. Earth Science, 43(6): 2149-2159. doi: 10.3799/dqkx.2018.568

    Type and Evolution of Deep-Water Channel Deposits of Ordovician Lashizhong Formation in Western Margin of Ordos Basin

    doi: 10.3799/dqkx.2018.568
    • Received Date: 2017-12-11
    • Publish Date: 2018-06-15
    • The deep-water channel sedimentary type is one of important sedimentary types in the deep-water zone. Research on the mechanism of deep-water channel not only can improve acquaintance of deep-water deposits, but also is helpful to oil and gas exploration. Mechanism of the deep-water channel of the Ordovician Lashizhong Formation in western margin of the Ordos basin was detailedly worked based on outcrop. The lithology of Lashizhong Formation consists of greyish-green mudstone and sandstone and few siltstone and conglomeration with flute cast, cross bedding, graded bedding and deformation structure, which suggests deep-water environment. Gravity flow deposits are well developed. The deep-water channel deposits are also typical. It is found in this study that the deep-water channel deposits could be divided into confined and non-confined channels, based on the morphology, structure, and sedimentary style. The former includes complex and vertical aggradation channel deposits. The latter can be subdivided into migrational channel and isolated small channel deposits. The lithology of complex channel deposits is coarse sandstone and conglomeration in the bottom, containing channel axis deposit, secondary channel and channel-levee system deposits, with 7.5 m in width, which could be divided into developmental, mature and decline phases. The vertical aggradation channel deposits are bedded medium and fine sandstone, with 12.4 m in width, 1.3 m in thickness, and the width-to-thickness ratio of 9.54. The migrational channel is medium to fine sandstone with northwestward migration. The width is 6.9-12.3 m, the thickness is 0.23-0.73 m, and width-to-thickness ratios range from 14.11-53.48. The isolated small channel deposits consist of fine sandstone and siltstone, lenticular shaped, small scale with 0.5-0.6 m in width, 0.15-0.25 m in thickness, and the width-to-thickness ratios of 2.4-3.33. The complex and vertical aggradation channel deposits develop when gravity flow outbreaks. Its energy is usually high with strong erosive power. The migrational channel deposits develop when gravity flow is in middle to later phases when their energy is damped. And the isolated small channel deposits develop during last phase of gravity flow. Its energy further decreases. In the spatial position, the complex and vertical channel deposits usually develop in the middle-upper part of slope. Migrational channel deposits form in the middle-lower slope, and isolated small channel deposits commonly grow in toe of slope and deep-water basin.

       

    • 致谢: 本文感谢分析研究的样品及资料由国际大洋钻探计划提供.
    • Biscara, L., Mulder, T., Gonthier, E., et al., 2010. Migrating Submarine Furrows on Gabbonese Margin (West Africa) from Miocene to Present:Influence of Bottom Currents? Geo-Temas, 11:21-22. http://www.vliz.be/en/imis?refid=240740
      Clark, J. D., Pickering, K. T., 1996. Architectural Elements and Growth Patterns of Submarine Channels:Application to Hydrocarbon Exploration.AAPG Bulletin, 80(2):194-221.https://doi.org/10.1306/64ed878c-1724-11d7-8645000102c1865d http://aapgbull.geoscienceworld.org/content/80/2/194
      Deptuck, M.E., Steffens, G.S., Barton, M., et al., 2003.Architecture and Evolution of Upper Fan Channel-Belts on the Niger Delta Slope and in the Arabian Sea.Marine and Petroleum Geology, 20(6-8):649-676. https://doi.org/10.1016/j.marpetgeo.2003.01.004
      Fei, A.W., 2001.Study of Trace Fossil Assemblage and Paleoenvironment of Middle Ordovician Lashizhong Formation, Ordos Basin.Geological Journal of China Universities, 7(3):35-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200103003.htm
      Gao, Z.Z., Luo, S.S., He, Y.B., 1995.Ordovician Submarine Fan Systems in West Margin of Ordos.Oil & Gas Geology, 16(2):119-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT502.003.htm
      Gül, M., Cronin, B.T., Gürbüz, K., 2012.Confined Deep Water System Development on the Accretionary Wedge (Miocene, Kahramanmaraş Foreland Basin, S Turkey).Earth-Science Reviews, 114(3-4):195-217. https://doi.org/10.1016/j.earscirev.2012.06.002
      He, Y.L., Xie, X.N., Kneller, B.C., et al., 2013.Architecture and Controlling Factors of Canyon Fills on the Shelf Margin in the Qiongdongnan Basin, Northern South China Sea.Marine and Petroleum Geology, 41(Suppl.):264-276.https://doi.org/10.1016/j.marpetgeo.2012.03.002 http://linkinghub.elsevier.com/retrieve/pii/S0264817212000608
      Jin, H.J., Sun, M.L., Li, Y.C., 2005.The "Sepical" Turbidites Measure of the Middle Ordovician Series in Zhuozishan Area, Inner Mongolia.Acta Sedimentologica Sinica, 23(1):34-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200501004.htm
      Keevil, G.M., Peakall, J., Best, J.L., 2007.The Influence of Scale, Slope and Channel Geometry on the Flow Dynamics of Submarine Channels.Marine and Petroleum Geology, 24(6-9):487-503. https://doi.org/10.1016/j.marpetgeo.2007.01.009
      Kolla, V., 2007.A Review of Sinuous Channel Avulsion Patterns in Some Major Deep-Sea Fans and Factors Controlling Them.Marine and Petroleum Geology, 24(6-9):450-469. https://doi.org/10.1016/j.marpetgeo.2007.01.004
      Kolla, V., Posamentier, H.W., Wood, L.J., 2007.Deep-Water and Fluvial Sinuous Channels-Characteristics, Similarities and Dissimilarities, and Modes of Formation.Marine and Petroleum Geology, 24(6-9):388-405. https://doi.org/10.1016/j.marpetgeo.2007.01.007
      Li, H., He, Y.B., Huang, W., et al., 2016.Contourites of the Ordovician Pingliang Formation in Southern Margin of Ordos Basin.Journal of Palaeogeography, 18(4):631-641 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201604013.htm
      Li, H., He, Y.B., Huang, W., et al., 2018.Research on Relationship between Characteristics of Deep-Water Deposits and Palaeoenvironment in the Ordovician, Pingliang Formation, Southern Margin of the Ordos Basin:A Case of Zhaolaoyu Countryside, Fuping Town, Shaanxi Province.Acta Sedimentologica Sinica, 36(2):93-109 (in Chinese with English abstract).
      Li, H., He, Y.B., Liu, Z.R.Z., et al., 2017.Characteristic of Gravity Flow Deposit in Pingliang Formation of Ordovician the Southwest Margin of the Ordos Basin.China Science Paper, 12(15):1774-1779 (in Chinese with English abstract). doi: 10.1007/s00367-011-0253-z
      Li, H., He, Y.B., Wang, Z.Q., 2011.Morphology and Characteristics of Deep Water High Sinuous Channel-Levee System.Journal of Palaeogeography, 13(2):139-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201102004.htm
      Li, H., Wang, Y.M., Xu, Q., et al., 2013.Characteristics and Processes of Deep Water Unidirectionally-Migrating Channel-Levee System.Geoscience, 27(3):653-661 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201303017.htm
      Li, H., Wang, Y., Zhu, W., et al., 2013.Seismic Characteristics and Processes of the Plio-Quaternary Unidirectionally Migrating Channels and Contourites in the Northern Slope of the South China Sea.Marine and Petroleum Geology, 43:370-380. https://doi.org/10.13039/501100001809
      Li, X.D., Que, Y., Huan, Y.Q., 2017.Analysis of Vertical Sedimentary Successions in the Lower Part of Kelimoli Formation, Middle Ordovician, Zhuozishan Area.Advances in Earth Science, 32(3):276-291 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/Y2017/V32/I3/276
      Mayall, M., Jones, E., Casey, M., 2006.Turbidite Channel Reservoirs-Key Elements in Facies Prediction and Effective Development.Marine and Petroleum Geology, 23(8):821-841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
      Peakall, J., Amos, K.J., Keevil, G.M., et al., 2007.Flow Processes and Sedimentation in Submarine Channel Bends.Marine and Petroleum Geology, 24(6-9):470-486. https://doi.org/10.1016/j.marpetgeo.2007.01.008
      Peakall, J., McCaffrey, B., Kneller, B., 2000.A Process Model for the Evolution, Morphology, and Architecture of Sinuous Submarine Channels.Journal of Sedimentary Research, 70(3):434-448. https://doi.org/10.1306/2dc4091c-0e47-11d7-8643000102c1865d
      Posamentier, H.W., 2003.Depositional Elements Associated with a Basin Floor Channel-Levee System:Case Study from the Gulf of Mexico.Marine and Petroleum Geology, 20(6-8):677-690. https://doi.org/10.1016/j.marpetgeo.2003.01.002
      Rasmussen, S., Lykke-Andersen, H., Kuijpers, A., et al., 2003.Post-Miocene Sedimentation at the Continental Rise of Southeast Greenland:The Interplay between Turbidity and Contour Currents.Marine Geology, 196(1-2):37-52. https://doi.org/10.1016/s0025-3227(03)00043-4
      Séranne, M., Abeigne, C.R.N., Lopez, N., 2000.Reply to 'Oligocene to Holocene Sediment Drifts and Bottom Currents on the Slope of Gabon Continental Margin (West Africa):Consequences for Sedimentation and Southeast Atlantic Upwelling', Sedimentary Geology 128, 179-199 (1999).Sedimentary Geology, 136(3-4):163-168. https://doi.org/10.1016/s0037-0738(00)00094-4
      Sun, Y.P., Wang, C.G., Wang, Y., et al., 2008.Geochemical Characteristics and Exploration Potential of Middle Ordovician Pingliang Formation in the Ordos Basin.Petroleum Geology & Experiment, 30(2):162-168 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S0264817217302532
      Wang, Z.T., Zhou, H.R., Wang, X.L., et al., 2015.Ordovician Geological Events Group in the West and South Ordos Basin.Acta Geologica Sinica, 89(11):1990-2004 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201511011.htm
      Wu, S.H., Feng, Z.Z., Zhang, J.S., 1994.Sedimentology of Gravity Flow Deposits of Middle Ordovician Pingliang Formation in West and South Margins of Ordos.Oil & Gas Geology, 15(3):226-234 (in Chinese with English abstract). doi: 10.1007/s00367-011-0253-z
      Wynn, R.B., Cronin, B.T., Peakall, J., 2007.Sinuous Deep-Water Channels:Genesis, Geometry and Architecture.Marine and Petroleum Geology, 24(6-9):341-387. https://doi.org/10.1016/j.marpetgeo.2007.06.001
      Xiao, B., He, Y.B., Luo, J.X., et al., 2014.Submarine Channel Complex Deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan Area, Inner Mongolia.Geological Review, 60(2):321-331 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201402008.htm
      Zhu, M., Graham, S., Pang, X., et al., 2010.Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present:Implications for Paleoceanographic Circulation, Northern South China Sea.Marine and Petroleum Geology, 27(1):307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      费安玮, 2001.鄂尔多斯盆地拉什仲组遗迹化石组合与古环境.高校地质学报, 7(3):35-44. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gxdzxb200103004
      高振中, 罗顺社, 何幼斌, 1995.鄂尔多斯西缘奥陶纪海底扇沉积体系.石油与天然气地质, 16(2):119-125. doi: 10.11743/ogg19950204
      晋慧娟, 孙明良, 李育慈, 2005.内蒙古桌子山中奥陶统的"特殊"浊积岩系.沉积学报, 23(1):34-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200501005
      李华, 何幼斌, 黄伟, 等, 2016.鄂尔多斯盆地南缘奥陶系平凉组等深流沉积.古地理学报, 18(4):631-642. doi: 10.7605/gdlxb.2016.04.047
      李华, 何幼斌, 黄伟, 等, 2018.鄂尔多斯盆地南缘奥陶系平凉组深水沉积特征及其与古环境关系——以陕西富平赵老峪地区为例.沉积学报, 36(2):93-109. http://www.oalib.com/paper/4897422
      李华, 何幼斌, 刘朱睿鸷, 等, 2017.鄂尔多斯盆地西南缘奥陶系平凉组重力流沉积特征.中国科技论文, 12(15):1774-1779. doi: 10.3969/j.issn.2095-2783.2017.15.017
      李华, 何幼斌, 王振奇, 2011.深水高弯度水道-堤岸沉积体系形态及特征.古地理学报, 13(2):139-149. doi: 10.7605/gdlxb.2011.02.002
      李华, 王英民, 徐强, 等, 2013.深水单向迁移水道-堤岸沉积体系特征及形成过程.现代地质, 27(3):653-661. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201303017
      李向东, 阙易, 郇雅棋, 2017.桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析.地球科学进展, 32(3):276-291. http://www.adearth.ac.cn/CN/abstract/abstract4240.shtml
      孙宜朴, 王传刚, 王毅, 等, 2008.鄂尔多斯盆地中奥陶统平凉组烃源岩地球化学特征及勘探潜力.石油实验地质, 30(2):162-168. doi: 10.11781/sysydz200802162
      王振涛, 周洪瑞, 王训练, 等, 2015.鄂尔多斯盆地西、南缘奥陶纪地质事件群耦合作用.地质学报, 89(11):1990-2004. http://www.oalib.com/paper/4874870
      吴胜和, 冯增昭, 张吉森, 1994.鄂尔多斯地区西缘及南缘中奥陶统平凉组重力流沉积.石油与天然气地质, 15(3):226-234. doi: 10.11743/ogg19940306
      肖彬, 何幼斌, 罗进雄, 等, 2014.内蒙古桌子山中奥陶统拉什仲组深水水道沉积.地质论评, 60(2):321-331. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201402008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (4674) PDF downloads(43) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return