• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 7
    Jul.  2018
    Turn off MathJax
    Article Contents
    Ding Lixue, Huang Guicheng, Xia Jinlong, 2018. Age and Petrogenesis of the Echeng Intrusion in Southeastern Hubei Province: Implications for Iron Mineralization. Earth Science, 43(7): 2350-2369. doi: 10.3799/dqkx.2018.569
    Citation: Ding Lixue, Huang Guicheng, Xia Jinlong, 2018. Age and Petrogenesis of the Echeng Intrusion in Southeastern Hubei Province: Implications for Iron Mineralization. Earth Science, 43(7): 2350-2369. doi: 10.3799/dqkx.2018.569

    Age and Petrogenesis of the Echeng Intrusion in Southeastern Hubei Province: Implications for Iron Mineralization

    doi: 10.3799/dqkx.2018.569
    • Received Date: 2018-05-18
    • Publish Date: 2018-07-15
    • The Echeng pluton is one of the six large plutons in southeastern Hubei Province, which is located in the northernmost of the region. The Chengchao iron deposit, the largest skarn iron deposit in the Middle-Lower reaches of Yangtze River belt, has occurred in the southern contact zone of the Echeng pluton. Many researches have showed that the Chengchao iron mineralization was closely connected with the magma evolution of the Echeng complex, whereas whether the mineralization is related to granitic rocks or dioritic rocks is still controversial. In this paper, we present U-Pb age, geochemical, and Sr-Nd-Hf isotopic data to provide constraints on the petrogenesis of the Echeng intrusion and discuss the relationship of magma evolution and iron mineralization. The Echeng complex mainly consists of granite, quartz monzonite, granite porphyry and small-scale diorite. LA-ICP-MS zircon U-Pb data indicates that the Echeng complex began to emplace at 140±1 Ma by medium-grained diorite phase, subsequently fine-grained diorite (132±2 Ma), granite porphyry (130±2 Ma), granite including medium-fine grained (129±2 Ma) and medium-grained (129±1 Ma) phases and quartz monzonite (129±1 Ma) were emplaced in order. According to geochemical characteristics, all the rocks can broadly be divided into two groups:(1) granitoids including granite, granite porphyry, hornblende quartz monzonite are potassic and are characterized by high SiO2, low TiO2, FeOt, MnO, MgO concentrations; (2) diorite including fine and medium grained diorites, are sodic and are characterized by low SiO2, high TiO2, FeOt, MnO, MgO concentrations. These rocks are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILE) such as Rb, Th, and depleted in high field strength elements(HFSE) such as Nb, P and Ti. Moreover, the Echeng granitoids show obviously negative Eu anomalies but the diorites have no such a signature. The Echeng granitoids have more negative εNd(t) values ranging from -11.7 to -10.1 and zircon εHf(t) values ranging from -22.91 to -9.83, and the diorites have relatively high εNd(t) value (-7.6) and zircon εHf(t) values ranging from -12.04 to -4.69. The geochemical and isotopic data suggests that the Echeng granitoids belong to highly fractionated I-type granites and were mainly derived from partial melting of the Paleoproterozoic basement, possibly with the addition of a small amount of mantle-derived materials, whereas the diorites were mainly originated from the enriched lithospheric mantle, followed by a certain degree of crystallization fractionation. The new geochronological data suggests that the Echeng granitoids and fine-grained diorite broadly coeval with the main mineralization of the Chengchao iron deposit. Combining with field contact relationship and previous research results, the Chengchao iron mineralization was probably related to the Echeng granitoids and fine-grained diorite. Based on the mineralizations in southeastern Hubei Province, magmatism is more closely related to iron mineralization with the increases of differentiation degrees and crustal contributions in the magma source.

       

    • loading
    • Allègre, C.J., Minster, J.F., 1978.Quantitative Models of Trace Element Behavior in Magmatic Processes.Earth and Planetary Science Letters, 38(1):1-25. https://doi.org/10.1016/0012-821x(78)90123-1
      Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., et al., 1995.Compositions of Near-Solidus Peridotite Melts from Experiments and Thermodynamic Calculations.Nature, 375(6529):308-311. https://doi.org/10.1038/375308a0
      Ballouard, C., Poujol, M., Boulvais, P., et al., 2016.Nb-Ta Fractionation in Peraluminous Granites:A Marker of the Magmatic-Hydrothermal Transition.Geology, 44(3):231-234. https://doi.org/10.1130/g38169y.1
      Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123(3):323-333. https://doi.org/10.1007/s004100050159
      Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Champion, D.C., Chappell, B.W., 1992.Petrogenesis of Felsic Ⅰ-Type Granites:an Example from Northern Queensland.Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):115-126. https://doi.org/10.1017/s026359330000780x
      Chappell, B.W., 1999.Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      Chen, C.H., Lin, W., Lu, H.Y., et al., 2000.Cretaceous Fractionated Ⅰ-Type Granitoids and Metaluminous A-Type Granites in SE China:The Late Yanshanian Post-Orogenic Magmatism.Transactions of the Royal Society of Edinburgh:Earth Sciences, 91(1-2):195-205. https://doi.org/10.1017/s0263593300007379
      Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. doi: 10.1007/BF00374895
      Deng, X.D., Li, J.W., Zhou, M.F., et al., 2015.In-Situ LA-ICPMS Trace Elements and U-Pb Analysis of Titanite from the Mesozoic Ruanjiawan W-Cu-Mo Skarn Deposit, Daye District, China.Ore Geology Reviews, 65:990-1004. https://doi.org/10.1016/j.oregeorev.2014.08.011
      Ding, L.X., Huang, G.C., Xia, J.L., 2014.Petrogenesis of the Longjiaoshan-Fujiashan Porphyritic Intrusion in Southeastern Hubei Province and Implications for Cu-W Mineralization.Acta Geologica Sinica, 88(8):1513-1527 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c648e8211ac6c7961482052461daebb2&encoded=0&v=paper_preview&mkt=zh-cn
      Ding, L.X., Huang, G.C., Xia, J.L., 2016.Petrogenesis of the Yangxin Complex in Southeast Hubei Province:Constraints from LA-ICP-MS Zircon U-Pb Ages and Hf Isotopes.Geological Journal of China Universities, 22(3):443-458 (in Chinese with English abstract).
      Falloon, T.J., Green, D.H., O'Neill, H.S.C., et al., 1997.Experimental Tests of Low Degree Peridotite Partial Melt Compositions:Implications for the Nature of Anhydrous Near-Solidus Peridotite Melts at 1 GPa.Earth and Planetary Science Letters, 152(1-4):149-162. https://doi.org/10.1016/s0012-821x(97)00155-6
      Green, D.H., 1973.Experimental Melting Studies on a Model Upper Mantle Composition at High Pressure under Water-Saturated and Water-Undersaturated Conditions.Earth and Planetary Science Letters, 19(1):37-53. https://doi.org/10.1016/0012-821x(73)90176-3
      Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Hu, H., Duan, Z., Luo, Y., et al., 2014.Trace Element Systematic of Magnetite from the Chengchao Iron Deposit in the Daye District:A Laser Ablation ICP-MS Study and Insights into Ore Genesis.Acta Petrologica Sinica, 30(5):1292-1306 (in Chinese with English abstract). https://www.researchgate.net/publication/276092136_Petrogenesis_of_the_Zhangmatun_gabbro_in_the_Ji'nan_complex_North_China_Craton_Implications_for_skarn-type_iron_mineralization
      Huang, G.C., Xia, J.L., Ding, L.X., et al., 2013.Stage Division and Origin of Tonglushan Pluton in Southeast Hubei Province:Evidence from Zircon U-Pb Ages and Hf Isotopes.Geology in China, 40(5):1392-1408 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=1ee2c43d3f6cbed55b4c5d3171b196b1&encoded=0&v=paper_preview&mkt=zh-cn
      Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China.Chemical Geology, 157(1/2):119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
      Li, J.W., Vasconcelos, P.M., Zhou, M.F., et al., 2014.Longevity of Magmatic-Hydrothermal Systems in the Daye Cu-Fe-Au District, Eastern China with Implications for Mineral Exploration.Ore Geology Reviews, 57:375-392. https://doi.org/10.1016/j.oregeorev.2013.08.002
      Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008.Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China:Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints.Mineral Deposita, 43(3):315-336. https://doi.org/10.1007/s00126-007-0161-3
      Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2009.Late Mesozoic Magmatism from the Daye Region, Eastern China:U-Pb Ages, Petrogenesis, and Geodynamic Implications.Contributions to Mineralogy and Petrology, 157(3):383-409. https://doi.org/10.1007/s00410-008-0341-x
      Li, X.H., Li, W.X., Li, Z.X., 2007a.On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China.Chinese Science Bulletin, 52(14):1873-1885. https://doi.org/10.1007/s11434-007-0259-0
      Li, X.H., Li, W.X., Wang, X.C., et al., 2010.SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China:Magmatic Response to Early Cretaceous Lithospheric Extension.Lithos, 119(3-4):427-438. https://doi.org/10.1016/j.lithos.2010.07.018
      Li, X.H., Li, Z.X., Li, W.X., et al., 2007b.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?Lithos, 96(1):186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      Liu, H., Qiu, J.S., Luo, Q.H., et al., 2002.Petrogenesis of the Mesozoic Potash-Rich Volcanic Rocks in the Luzong Basin, Anhui Province:Geochemical Constraints.Geochimica, 31(2):129-140 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0379-1726.2002.02.004
      Ludwig, K. R., 2003. User's Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 1-70.
      Luo, D. W., 2008. Study on Contact Zone Tectonic and Deep Exploration in Chengchao Iron Deposit, Hubei Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Ma, C.Q., Carl, E., Xu, C.H., et al., 2000.The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane:Constraints from Geochemistry and Nd-Sr Isotope Systematics.Precambrian Research, 102(3-4):279-301. https://doi.org/10.1016/s0301-9268(00)00069-3
      Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co
      Min, H.L., Xu, B.J., Ji, A., et al., 2008.Factor Analysis of Trace Elements of Chengchao Iron Ore.Metalmine, 38(9):93-96 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1001-1250.2008.09.028
      Nicholls, I.A., Ringwood, A.E., 1972.Production of Silica-Saturated Tholeiitic Magmas in Island Arcs.Earth and Planetary Science Letters, 17(1):243-246. https://doi.org/10.1016/0012-821x(72)90282-8
      Pérez-Soba, C., Villaseca, C., 2010.Petrogenesis of Highly Fractionated Ⅰ-Type Peraluminous Granites:La Pedriza Pluton (Spanish Central System).Geologica Acta, 8(2):131-149.
      Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of High Fractionated Ⅰ-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry, and Nd-Hf Isotopes.Acta Petrologica Sinica, 24 (11):2468-2484 (in Chinese with English abstract). https://www.researchgate.net/publication/263693089_Petrogenesis_of_highly_fractionated_I-type_granites_in_the_coastal_area_of_northeastern_Fujian_Province_Constraints_from_zircon_U-Pb_geochronology_geochemistry_and_Nd-Hf_isotopes
      Ren, Z., Li, J.W., Hu, H., 2012.Fluid Inclusion Study of the Chengchao Iron Deposit in the Daye District, and Insights into Ore Genesis.Mineral Deposits, 31(S):675-676 (in Chinese with English abstract). https://doi.org/10.16111/j.0258-7106.2012.s1.341
      Rollison, H. R., 1993. Using Geochemical Data: Evaluation, Persentation, Interpretation. Pearson Education Limited, New York, 144-147.
      Sangster, D. F., 1964. The Contact Metasomatic Magnetite Deposits of Southwestern British Columbia (Dissertation). University of British Columibia, Vancouver. https://doi.org/ 10.14288/1.0053070
      Schwartz, M.O., Melcher, F., 2004.The Falémé Iron District, Senegal.Economic Geology, 99(5):917-939. https://doi.org/10.2113/gsecongeo.99.5.917
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, Y., Ma, C.Q., Liu, B., 2017.Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt.Earth Science, 42(6):891-908 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.077
      Tao, J.H., Li, W.X., Li, X.H., et al., 2013.Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province:Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry.Science China Earth Sciences, 56(6):922-939. https://doi.org/10.1007/s11430-013-4593-6
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford.
      Wang, J., Xie, G.Q., Yao, L., et al., 2014.Petrogenesis of Granodiorite Porphyry in Jilongshan Skarn Au Deposit of Southeast Hubei Province:Geochemical and Zircon U-Pb Dating constraints.Mineral Deposits, 33(1):137-152 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.0258-7106.2014.01.009
      Wang, L., Hu, M.A., Zhang, W.S., et al., 2009.Structural Ore-Controlling Characteristic and Prospecting Direction in Chengchao Iron Deposit in Southeast Hubei.Metalmine, (4):74-77 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1001-1250.2009.04.021
      Wang, Q., Wyman, D.A., Xu, J.F., et al., 2006.Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China):Implications for a Geodynamics and Cu-Au Mineralization.Lithos, 89(3-4):424-446. https://doi.org/10.1016/j.lithos.2005.12.010
      Wang, S., Ye, H.S., Yang, Y.Q., et al., 2016.Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan.Earth Science, 41(2):293-316 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.022
      Wang, Y.L., Zhang, Q., Wang, Y., 2001.Geochemical Characteristics of Volcanic Rocks from Ningwu Area, and Its Significance.Acta Petrologica Sinica, 17(4):565-575 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2001.04.007
      Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Wedepohl, K.H., Krueger, I., Hartmann, G., 1995.Medieval Lead Glass from Northwestern Europe.Journal of Glass Studies, 37:65-82. http://www.scholastic.com/browse/article.jsp?id=3754175
      Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London.
      Wolf, M.B., London, D., 1994.Apatite Dissolution into Peraluminous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms.Geochimica et Cosmochimica Acta, 58(19):4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0
      Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003a.Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ):Geochronology and Petrogenesis.Lithos, 66 (3-4):241-273. https://doi.org/10.1016/S0024-4937(02)00222-0
      Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003b.Highly Fractionated Ⅰ-Type Granites in NE China (Ⅱ):Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic.Lithos, 67(3-4):191-204. https://doi.org/10.1016/s0024-4937(03)00015-x
      Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science in China (Series D), 47(7):745-765 (in Chinese). http://cn.bing.com/academic/profile?id=f194a5d4e1524663be5540256112ab5b&encoded=0&v=paper_preview&mkt=zh-cn
      Xia, J.L., Hu, M.A., Xu, B.J., et al., 2009.Geochemical Constraints on the Ore-Forming Materials of the Chengchao Iron Deposit, Hubei Province.Geoscience, 23(2):285-291 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-8527.2009.02.013
      Xia, J.L., Huang, G.C., Ding, L.X., et al., 2015.In Situ Analyses of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircons from the Tongshankou Granodiorite Porphyry in Southeast Hubei Province, Middle-Lower Yangtze River Metallogenic Belt, China.Acta Geologica Sinica (English Edition), 89(5):1588-1600. https://doi.org/10.1111/1755-6724.12566
      Xie, G.Q., Mao, J.W., Li, R.L., et al., 2006.SHRIMP Zircon U-Pb Dating for Volcanic Rocks of the Dasi Formation in Southeast Hubei Province, Middle-Lower Reaches of the Yangtze River and Its Implications.Chinese Science Bulletin, 51(24):3000-3009. https://doi.org/10.1007/s11434-006-2187-9
      Xie, G.Q., Mao, J.W., Li, R.L., et al., 2008.Geochemistry and Petrogenesis of Late Mesozoic Granitoids in Southeastern Hubei Province and Constrains on the Timing of Lithospheric Thinning, Middle-Lower Reaches of the Yangtze River, Eastern China.Acta Petrologica Sinica, 24(8):1917-1927 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b7692d874351aa08bdb3b22660597211&encoded=0&v=paper_preview&mkt=zh-cn
      Xie, G.Q., Mao, J.W., Zhao, H.J., 2011a.Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Late Mesozoic Intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China.Lithos, 125(1-2):693-710. https://doi.org/10.1016/j.lithos.2011.04.001
      Xie, G.Q., Mao, J.W., Zhao, H.J., et al., 2011b.Timing of Skarn Deposit Formation of the Tonglushan Ore District, Southeastern Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt and Its Implications.Ore Geology Reviews, 43(1):62-77. https://doi.org/10.1016/j.oregeorev.2011.05.005
      Xie, G.Q., Mao, J.W., Zhao, H.J., et al., 2012.Zircon U-Pb and Phlogopite 40Ar-39Ar Age of the Chengchao and Jinshandian Skarn Fe Deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt, China.Mineral Deposita, 47(6):633-652. https://doi.org/10.1007/s00126-011-0367-2
      Yan, J., Chen, J.F., Xu, X.S., 2008.Geochemistry of Cretaceous Mafic Rocks from the Lower Yangtze Region, Eastern China:Characteristics and Evolution of the Lithospheric Mantle.Journal of Asian Earth Sciences, 33(3/4):177-193. https://doi.org/10.1016/j.jseaes.2007.11.002
      Yao, L., Liu, J.L., Wang, J., et al., 2012.The Relationship between Granitiods and Mineralization of the Chengchao Large-Size Skarn Iron Deposit in Southeastern Hubei Ore Concentration Area.Geology in China, 39(6):1712-1726 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-3657.2012.06.019
      Yao, L., Xie, G.Q., Mao, J.W., et al., 2015.Geological, Geochronological, and Mineralogical Constraints on the Genesis of the Chengchao Skarn Fe Deposit, Edong Ore District, Middle-Lower Yangtze River Valley Metallogenic Belt, Eastern China.Journal of Asian Earth Sciences, 101:68-82. https://doi.org/10.1016/j.jseaes.2015.01.018
      Yuan, H.L., Gao, S., Dai, M.N., et al., 2008.Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS.Chemical Geology, 247(1-2):100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      Zhang, H.F., Harris, N., Parrish, R., et al., 2004.Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform.Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031
      Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009.Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Zayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Science in China (Series D:Earth Sciences), 52(9):1223-1239. https://doi.org/10.1007/s11430-009-0132-x
      Zindler, A., Hart, S., 1986.Chemical GeoDynamics.Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      Zürcher, L., Ruiz, J., Barton, M.D., 2001.Paragenesis, Elemental Distribution, and Stable Isotopes at the Peña Colorada Iron Skarn, Colima, Mexico.Economic Geology, 96(3):535-557. https://doi.org/10.2113/gsecongeo.96.3.535
      丁丽雪, 黄圭成, 夏金龙, 2014.鄂东南地区龙角山-付家山斑岩体成因及其对成矿作用的指示.地质学报, 88(8):1513-1527. http://www.cqvip.com/QK/95080X/201408/662237550.html
      丁丽雪, 黄圭成, 夏金龙, 2016.鄂东南地区阳新复式岩体成因:LA-ICP-MS锆石U-Pb年龄及Hf同位素证据.高校地质学报, 22(3):443-458. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxdx201603005&dbname=CJFD&dbcode=CJFQ
      胡浩, 段壮, Luo, Y., 等, 2014.鄂东程潮铁矿床磁铁矿的微量元素组成及其矿床成因意义.岩石学报, 30(5):1292-1306. https://www.wenkuxiazai.com/doc/1163369e0975f46526d3e16c-2.html
      黄圭成, 夏金龙, 丁丽雪, 等, 2013.鄂东南地区铜绿山岩体的侵入期次和物源:锆石U-Pb年龄和Hf同位素证据.中国地质, 40(5):1392-1408. http://www.cqvip.com/qk/90050X/201305
      刘洪, 邱检生, 罗清华, 等, 2002.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学, 31(2):129-140. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200202003.htm
      骆地伟, 2008. 程潮铁矿接触带构造研究与深部找矿(硕士学位论文). 中国地质大学(武汉).
      闵厚禄, 徐伯骏, 季翱, 等, 2008.程潮铁矿矿石微量元素因子分析.金属矿山, 38(9):93-96. http://www.oalib.com/paper/4821805
      邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://cdmd.cnki.com.cn/Article/CDMD-10405-1015990409.htm
      任喆, 李建威, 胡浩, 2012.鄂东南地区程潮铁矿流体包裹体研究及其矿床成因意义.矿床地质, 31(S):675-676. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201406012.htm
      孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. http://www.earth-science.net/WebPage/Article.aspx?id=3586
      王建, 谢桂青, 姚磊, 等, 2014.鄂东南鸡笼山矽卡岩型金矿床花岗闪长斑岩的成因:地球化学和锆石U-Pb年代学约束.矿床地质, 33(1):137-152. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz201401009&dbname=CJFD&dbcode=CJFQ
      王磊, 胡明安, 张旺生, 等, 2009.鄂东南程潮铁矿构造控矿特征及找矿方向.金属矿山, (4):74-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks200904021
      王赛, 叶会寿, 杨永强, 等, 2016.豫西火神庙岩体桔石U-Pb年代学、地球化学及Hf同位素组成.地球科学, 41(2):293-316. http://www.earth-science.net/WebPage/Article.aspx?id=3247
      吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://engine.scichina.com/publisher/scp/journal/SSTe?slug=Overview
      夏金龙, 胡明安, 徐伯骏, 等, 2009.湖北程潮铁矿成矿物质来源的地球化学制约.现代地质, 23(2):285-291. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200902012.htm
      谢桂青, 毛景文, 李瑞玲, 等, 2008.鄂东南地区大型矽卡岩型铁矿床金云母40Ar-39Ar同位素年龄及其构造背景初探.岩石学报, 24(8):1917-1927. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808022
      姚磊, 刘佳林, 王建, 等, 2012.鄂东南矿集区程潮大型矽卡岩铁矿的花岗质岩与成矿关系探讨.中国地质, 39(6):1712-1726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206019
    • 丁丽雪表1.pdf
      丁丽雪表4.docx
      丁丽雪表2.pdf
      丁丽雪表3.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)

      Article views (4221) PDF downloads(64) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return