Citation: | Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan, 2018. Potential Applications of Fe and Mg Isotopes in Genesis of Chromite Deposits in Ophiolites. Earth Science, 43(4): 1011-1024. doi: 10.3799/dqkx.2018.705 |
Arai, S., 1992.Chemistry of Chromian Spinel in Volcanic Rocks as a Potential Guide to Magma Chemistry.Mineralogical Magazine, 56(383):173-184. https://doi.org/10.1180/minmag.1992.056.383.04
|
Arai, S., Miura, M., 2016.Formation and Modification of Chromitites in the Mantle.Lithos, 264:277-295. https://doi.org/10.1016/j.lithos.2016.08.039
|
Arai, S., Yurimoto, H., 1994.Podiform Chromitites of the Tari-Misaka Ultramafic Complex, Southwestern Japan, as Mantle-Melt Interaction Products.Economic Geology, 89(6):1279-1288. https://doi.org/10.2113/gsecongeo.89.6.1279
|
Augé, T., 1987.Chromite Deposits in the Northern Oman Ophiolite:Mineralogical Constraints.Mineralium Deposita, 22(1):1-10.https://doi.org/10.1007/bf00204235 doi: 10.1007%2FBF00204235
|
Bai, Y., Su, B.X., Chen, C., et al., 2017.Base Metal Mineral Segregation and Fe-Mg Exchange Inducing Extreme Compositions of Olivine and Chromite from the Xiadong Alaskan-Type Complex in the Southern Part of the Central Asian Orogenic Belt.Ore Geology Reviews, 90:184-192. https://doi.org/10.1016/j.oregeorev.2017.01.023
|
Bao, P.S., 2009.Further Discussion on the Genesis of Podiform Chromite Deposits in the Ophiolites-Questioning about the Rock/Melt Interaction Metallogeny.Geological Bulletin of China, 28(12):1741-1761 (in Chinese with English abstract). https://www.researchgate.net/publication/285981984_Further_discussion_on_the_genesis_of_the_podiform_chromite_deposits_in_the_ophiolites-questioning_about_the_rock_melt_interaction_metallogeny
|
Borisova, A.Y., Ceuleneer, G., Kamenetsky, V.S., et al., 2012.A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-Hosted Inclusions.Journal of Petrology, 53(12):2411-2440. https://doi.org/10.1093/petrology/egs054
|
Brown, G.E., Prewitt, C.T., 1973.High Temperature Crystal Chemistry of Hortonolite.American Mineralogist, 58(7-8):577-587. http://rruff.info/uploads/AM58_577.pdf
|
Cao, H.H., Zhao, X.M., Zhang, H.F., 2016.Iron Isotope System and Its Applications in Mantle Geochemistry.Bulletin of Mineralogy, Petrology and Geochemistry, 35(5):1053-1064 (in Chinese with English abstract). http://lib.gig.ac.cn/local/science/320,1600.PDF
|
Chen, C., Su, B.X., Uysal, I., et al., 2015.Iron Isotopic Constraints on the Origin of Peridotite and Chromitite in the Kızıldaǧ Ophiolite, Southern Turkey.Chemical Geology, 417:115-124. https://doi.org/10.1016/j.chemgeo.2015.10.001
|
Colás, V., González-Jiménez, J.M., Griffin, W.L., et al., 2014.Fingerprints of Metamorphism in Chromite:New Insights from Minor and Trace Elements.Chemical Geology, 389:137-152. https://doi.org/10.1016/j.chemgeo.2014.10.001
|
Dauphas, N., Craddock, P.R., Asimow, P.D., et al., 2009.Iron Isotopes May Reveal the Redox Conditions of Mantle Melting from Archean to Present.Earth and Planetary Science Letters, 288(1-2):255-267. https://doi.org/10.1016/j.epsl.2009.09.029
|
Dauphas, N., John, S.G., Rouxel, O., 2017.Iron Isotope Systematics.Reviews in Mineralogy and Geochemistry, 82(1):415-510. https://doi.org/10.2138/rmg.2017.82.11
|
de Launay, L.L., 1913.Traité de Métallogénie:Gîtes Minéraux et Métallifères.Béranger, Paris, 1:257. http://www.worldcat.org/title/traite-de-metallogenie-gites-mineraux-et-metalliferes-gisements-recherche-production-et-commerce-des-mineraux-utiles-et-minerais-description-des-principales-mines/oclc/2056702
|
Dick, H.J.B., Bullen, T., 1984.Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas.Contributions to Mineralogy and Petrology, 86(1):54-76.https://doi.org/10.1007/bf00373711 doi: 10.1007/BF00373711
|
Dingwell, D.B., Virgo, D., 1988.Viscosities of Melts in the Na2O-FeO-Fe2O3-SiO2 System and Factors Controlling Relative Viscosities of Fully Polymerized Silicate Melts.Geochimica et Cosmochimica Acta, 52(2):395-403. https://doi.org/10.1016/0016-7037(88)90095-6
|
Duke, J.M., 1982.Ore Deposit Model 7-Magma Segregation Deposits of Chromite.Geochimica et Cosmochimica Acta, 39:1061-1074. https://pubs.er.usgs.gov/publication/ofr20101232
|
Fisher, L.W., 1929.Origin of Chromite Deposits.Economic Geology, 24(7):691-721. https://doi.org/10.2113/gsecongeo.24.7.691
|
González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., et al., 2014.Chromitites in Ophiolites:How, Where, When, Why? Part Ⅱ.The Crystallization of Chromitites.Lithos, 189(3):140-158.https://doi.org/10.1016/j.lithos.2013.09.008 https://www.sciencedirect.com/science/article/pii/S002449371300296X
|
Hagen, A., Mikkelsen, L., 2005.XANES Study of the Oxidation State and Coordination Environment of Manganese, Chromium and Cobalt in Spinel Type Materials.Solid State Electrochemistry, Proceedings, 197-202. http://repositorio.lneg.pt/bitstream/10400.9/1698/1/34954.pdf
|
He, Y.S., Hu, D.P., Zhu, C.W., 2015.Progress of Iron Isotope Geochemistry in Geoscience.Earth Science Frontiers, 22(5):54-71 (in Chinese with English abstract). https://www.researchgate.net/publication/282988768_Progress_of_iron_isotope_geochemistry_in_geoscience
|
Hu, Y., Teng, F.Z., Zhang, H.F., et al., 2016.Metasomatism-Induced Mantle Magnesium Isotopic Heterogeneity:Evidence from Pyroxenites.Geochimica et Cosmochimica Acta, 185:88-111. https://doi.org/10.1016/j.gca.2015.11.001
|
Huang, F., 2011.Non-Traditional Stable Isotope Fractionation at High Temperatures.Acta Petrologica Sinica, 27(2):365-382 (in Chinese with English abstract). https://www.researchgate.net/publication/305533880_Non-traditional_stable_isotope_fractionation_at_high_temperatures
|
Huang, F., Zhang, Z.F., Lundstrom, C.C., et al., 2011.Iron and Magnesium Isotopic Compositions of Peridotite Xenoliths from Eastern China.Geochimica et Cosmochimica Acta, 75(12):3318-3334. https://doi.org/10.1016/j.gca.2011.03.036
|
Huang, M.X., Yang, J.J., Powell, R., et al., 2014.High-Pressure Metamorphism of Serpentinized Chromitite at Luobusha (Southern Tibet).American Journal of Science, 314(1):400-433. https://doi.org/10.2475/01.2014.11
|
Irvine, T.N., 1977.Chromite Crystallization in the Join Mg2SiO4-CaMgSi2O6-CaAl2Si2O8-MgCr2O4-SiO2.Carnegie Institution of Washington, Yearbook, Washington, D.C., 76:465-472. http://www.academia.edu/8752174/Parental_magma_composition_of_the_syn-tectonic_Dawros_Peridotite_chromitites_NW_Connemara_Ireland
|
Johan, Z., Dunlop, H., LeBel, L., et al., 1983.Origin of Chromite Deposits in Ophiolitic Complexes-Evidence for a Volatile-Rich and Sodium-Rich Reducing Fluid Phase.Fortschritte der Mineralogie, 61:105-107.
|
Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001.Factors Controlling Chemistry of Magmatic Spinel:An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks.Journal of Petrology, 42(4):655-671. https://doi.org/10.1093/petrology/42.4.655
|
Kapsiotis, A., Rassios, A.E., Antonelou, A., et al., 2016.Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece:Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites.Minerals, 6(4):124. https://doi.org/10.3390/min6040124
|
Kelemen, P.B., Dick, H.J.B., Quick, J.E., 1992.Formation of Harzburgite by Pervasive Melt/Rock Reaction in the Upper Mantle.Nature, 358(6388):635-641. https://doi.org/10.1038/358635a0
|
Lago, B.L., Rabinowicz, M., Nicolas, A., 1982.Podiform Chromite Ore Bodies:A Genetic Model.Journal of Petrology, 23(1):103-125. https://doi.org/10.1093/petrology/23.1.103
|
Leblanc, M., Nicolas, A., 1992.Ophiolitic Chromitites.International Geology Review, 34(7):653-686. https://doi.org/10.1080/00206819209465629
|
Lenaz, D., Adetunji, J., Rollinson, H., 2014.Determination of Fe3+/∑Fe Ratios in Chrome Spinels Using a Combined Mössbauer and Single-Crystal X-Ray Approach:Application to Chromitites from the Mantle Section of the Oman Ophiolite.Contributions to Mineralogy and Petrology, 167(1):958. doi: 10.1007/s00410-013-0958-2
|
Li, S.G., 2015.Tracing Deep Carbon Recycling by Mg Isotopes.Earth Science Frontiers, 22(5):143-159 (in Chinese with English abstract). https://www.researchgate.net/publication/283018948_Tracing_deep_carbon_recycling_by_Mg_isotopes
|
Li, X.P., Chen, H.K., Wang, Z.L., et al., 2015.Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet.Journal of Asian Earth Sciences, 110:55-71. https://doi.org/10.1016/j.jseaes.2014.06.023
|
Li, Y.B., Kimura, J.I., Machida, S., et al., 2013.High-Mg Adakite and Low-Ca Boninite from a Bonin Fore-Arc Seamount:Implications for the Reaction between Slab Melts and Depleted Mantle.Journal of Petrology, 54(6):1149-1175. https://doi.org/10.1093/petrology/egt008
|
Liu, C.Z., Zhang, C., Yang, L.Y., et al., 2014.Formation of Gabbronorites in the Purang Ophiolites (SW Tibet) through Melting of Hydrothermally Altered Mantle along a Detachment Fault.Lithos, 205(10):127-141.
|
Liu, F., Yang, J.S., Dilek, Y., et al., 2015.Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yarlung-Zangbo Suture Zone:Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet.Gondwana Research, 27(2):701-718. https://doi.org/10.1016/j.gr.2014.08.002
|
Liu, P.P., Teng, F.Z., Dick, H.J.B., et al., 2017.Magnesium Isotopic Composition of the Oceanic Mantle and Oceanic Mg Cycling.Geochimica et Cosmochimica Acta, 206:151-165. https://doi.org/10.1016/j.gca.2017.02.016
|
Liu, S.A., Teng, F.Z., Yang, W., et al., 2011.High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Mantle Xenoliths from the North China Craton.Earth and Planetary Science Letters, 308(1-2):131-140. https://doi.org/10.1016/j.epsl.2011.05.047
|
Liu, X., Su, B.X., Bai, Y., et al., 2018.Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite:Inference from Mineral Inclusions.Earth Science, 43(4):1038-1050 (in Chinese with English abstract).
|
Lorand, J.P., Ceuleneer, G., 1989.Silicate and Base-Metal Sulfide Inclusions in Chromites from the Maqsad Area (Oman Ophiolite, Gulf of Oman):A Model for Entrapment.Lithos, 22(3):173-190. https://doi.org/10.1016/0024-4937(89)90054-6
|
Matveev, S., Ballhaus, C., 2002.Role of Water in the Origin of Podiform Chromitite Deposits.Earth and Planetary Science Letters, 203(1):235-243.https://doi.org/10.1016/s0012-821x(02)00860-9 doi: 10.1016/S0012-821X(02)00860-9
|
Melcher, F., Grum, W., Simon, G., et al., 1997.Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan:A Study of Solid and Fluid Inclusions in Chromite.Journal of Petrology, 38(10):1419-1458. https://doi.org/10.1093/petroj/38.10.1419
|
Miller, C., 2003.Geochemistry and Tectonomagmatic Affinity of the Yungbwa Ophiolite, SW Tibet.Lithos, 66(3-4):155-172.https://doi.org/10.1016/s0024-4937(02)00217-7 doi: 10.1016/S0024-4937(02)00217-7
|
Murck, B.W., Campbell, I.H., 1986.The Effects of Temperature, Oxygen Fugacity and Melt Composition on the Behaviour of Chromium in Basic and Ultrabasic Melts.Geochimica et Cosmochimica Acta, 50(9):1871-1887. https://doi.org/10.1016/0016-7037(86)90245-0
|
Nicolas, A., Prinzhofer, A., 1983.Cumulative or Residual Origin for the Transition Zone in Ophiolites:Structural Evidence.Journal of Petrology, 24(2):188-206. https://doi.org/10.1093/petrology/24.2.188
|
Pagé, P., Barnes, S.J., 2009.Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada.Economic Geology, 104(7):997-1018.https://doi.org/10.2113/gsecongeo.104.7.997 doi: 10.2113/econgeo.104.7.997
|
Paktunc, A.D., 1990.Origin of Podiform Chromite Deposits by Multistage Melting, Melt Segregation and Magma Mixing in the Upper Mantle.Ore Geology Reviews, 5(3):211-222.https://doi.org/10.1016/0169-1368(90)90011-b doi: 10.1016/0169-1368(90)90011-B
|
Papike, J.J., Karner, J.M., Shearer, C.K., 2005.Comparative Planetary Mineralogy:Valence State Partitioning of Cr, Fe, Ti, and V among Crystallographic Sites in Olivine, Pyroxene, and Spinel from Planetary Basalts.American Mineralogist, 90(2-3):277-290. doi: 10.2138/am.2005.1779
|
Polyakov, V.B., Mineev, S.D., 2000.The Use of Mössbauer Spectroscopy in Stable Isotope Geochemistry.Geochimica et Cosmochimica Acta, 64(5):849-865.https://doi.org/10.1016/s0016-7037(99)00329-4 doi: 10.1016/S0016-7037(99)00329-4
|
Princivalle, F., 1990.Influence of Temperature and Composition on Mg-Fe2+ Intracrystalline Distribution in Olivines.Mineralogy and Petrology, 43(2):121-129.https://doi.org/10.1007/bf01164305 doi: 10.1007/BF01164305
|
Proenza, J., Gervilla, F., Melgarejo, J.C., et al., 1999.Al-and Cr-Rich Chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba); Consequence of Interaction between Volatile-Rich Melts and Peridotites in Suprasubduction Mantle.Economic Geology, 94(4):547-566. https://doi.org/10.2113/gsecongeo.94.4.547
|
Roberts, S., Neary, C., 1993.Petrogenesis of Ophiolitic Chromitite.Geological Society, London, Special Publications, 76(1):257-272.https://doi.org/10.1144/gsl.sp.1993.076.01.12 doi: 10.1144/GSL.SP.1993.076.01.12
|
Robinson, P.T., Bai, W.J., Malpas, J., et al., 2004.Ultra-High Pressure Minerals in the Luobusa Ophiolite, Tibet and Their Tectonic Implications.Geological Society, London, Special Publications, 226(1):247-271. doi: 10.1144/GSL.SP.2004.226.01.14
|
Robinson, P.T., Trumbull, R.B., Schmitt, A., et al., 2015.The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites.Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003
|
Roeder, P.L., Reynolds, I., 1991.Crystallization of Chromite and Chromium Solubility in Basaltic Melts.Journal of Petrology, 32(5):909-934. https://doi.org/10.1093/petrology/32.5.909
|
Rollinson, H., Adetunji, J., 2015.The Geochemistry and Oxidation State of Podiform Chromitites from the Mantle Section of the Oman Ophiolite:A Review.Gondwana Research, 27(2):543-554. https://doi.org/10.1016/j.gr.2013.07.013
|
Saenger, C., Wang, Z.R., 2014.Magnesium Isotope Fractionation in Biogenic and Abiogenic Carbonates:Implications for Paleoenvironmental Proxies.Quaternary Science Reviews, 90:1-21. https://doi.org/10.1016/j.quascirev.2014.01.014
|
Schauble, E.A., 2011.First-Principles Estimates of Equilibrium Magnesium Isotope Fractionation in Silicate, Oxide, Carbonate and Hexaaquamagnesium (2+) Crystals.Geochimica et Cosmochimica Acta, 75(3):844-869. https://doi.org/10.1016/j.gca.2010.09.044
|
Schiano, P., Clocchiatti, R., Lorand, J.P., et al., 1997.Primitive Basaltic Melts Included in Podiform Chromites from the Oman Ophiolite.Earth and Planetary Science Letters, 146(3):489-497. https://linkinghub.elsevier.com/retrieve/pii/S0012821X96002543
|
Shi, R.D., Alard, O., Zhi, X.C., et al., 2007.Multiple Events in the Neo-Tethyan Oceanic Upper Mantle:Evidence from Ru-Os-Ir Alloys in the Luobusa and Dongqiao Ophiolitic Podiform Chromitites, Tibet.Earth and Planetary Science Letters, 261(1-2):33-48. https://doi.org/10.1016/j.epsl.2007.05.044
|
Sio, C.K.I., Dauphas, N., Teng, F.Z., et al., 2013.Discerning Crystal Growth from Diffusion Profiles in Zoned Olivine by In Situ Mg-Fe Isotopic Analyses.Geochimica et Cosmochimica Acta, 123(2):302-321.https://doi.org/10.1016/j.gca.2013.06.008 https://www.sciencedirect.com/science/article/pii/S0016703713003402
|
Smyth, J.R., Hazen, R.M., 1973.The Crystal Structure of Forsterite and Hortonolite at Several Temperatures up to 900℃.American Mineralogist, 58:588-593. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.558.3318
|
Su, B.X., Teng, F.Z., Hu, Y., et al., 2015.Iron and Magnesium Isotope Fractionation in Oceanic Lithosphere and Sub-Arc Mantle:Perspectives from Ophiolites.Earth and Planetary Science Letters, 430:523-532. https://doi.org/10.1016/j.epsl.2015.08.020
|
Su, B.X., Zhou, M.F., Robinson, P.T., 2016.Extremely Large Fractionation of Li Isotopes in Chromitite-Bearing Mantle Sequence.Scientific Reports, 6:22370. doi: 10.1038/srep22370
|
Teng, F.Z., 2017.Magnesium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):219-287. https://doi.org/10.2138/rmg.2017.82.7
|
Teng, F.Z., Dauphas, N., Helz, R.T., 2008.Iron Isotope Fractionation during Magmatic Differentiation in Kilauea Iki Lava Lake.Science, 320(5883):1620-1622. https://doi.org/10.1126/science.1157166
|
Teng, F.Z., Dauphas, N., Helz, R.T., et al., 2011.Diffusion-Driven Magnesium and Iron Isotope Fractionation in Hawaiian Olivine.Earth and Planetary Science Letters, 308(3-4):317-324. https://doi.org/10.1016/j.epsl.2011.06.003
|
Teng, F.Z., Li, W.Y., Ke, S., et al., 2010.Magnesium Isotopic Composition of the Earth and Chondrites.Geochimica et Cosmochimica Acta, 74(14):4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
|
Trumbull, R.B., Yang, J.S., Robinson, P.T., et al., 2009.The Carbon Isotope Composition of Natural SiC (Moissanite) from the Earth's Mantle:New Discoveries from Ophiolites.Lithos, 113(3-4):612-620. https://doi.org/10.1016/j.lithos.2009.06.033
|
Uysal, I., Tarkian, M., Sadiklar, M.B., et al., 2009.Petrology of Al-and Cr-Rich Ophiolitic Chromitites from the Mula, SW Turkey:Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry.Contributions to Mineralogy and Petrology, 158(5):659-674. https://doi.org/10.1007/s00410-009-0402-9
|
von Groddeck, A., 1879. Die Lehre von den Lagerstätten der Erze: Ein zweig der Geologie. Metzger and Wittig., Leipzig.
|
Wang, H.S., Bai, W.J., Wang, B.X., et al., 1983.Chromite Deposits in China and Their Genesis.Science Press, Beijing, 32-59 (in Chinese). doi: 10.1111/j.1755-6724.1987.mp61002006.x
|
Wang, X.B., Bao, P.S., 1987.The Genesis of Podiform Chromite Deposits-A Case Study of the Luobusa Ophiolitic Chromite Deposit.Acta Geologica Sinica, 22(2):166-181+201-202 (in Chinese with English abstract). http://hub.hku.hk/handle/10722/150999
|
Weyer, S., Ionov, D.A., 2007.Partial Melting and Melt Percolation in the Mantle:The Message from Fe Isotopes.Earth and Planetary Science Letters, 259(1):119-133.https://doi.org/10.1016/j.epsl.2007.04.033 http://adsabs.harvard.edu/abs/2007E&PSL.259..119W
|
Xiao, Y., Teng, F.Z., Su, B.X., et al., 2016.Iron and Magnesium Isotopic Constraints on the Origin of Chemical Heterogeneity in Podiform Chromitite from the Luobusa Ophiolite, Tibet.Geochemistry, Geophysics, Geosystems, 17(3):940-953.https://doi.org/10.1002/2015gc006223 doi: 10.1002/2015GC006223
|
Xiao, Y., Teng, F.Z., Zhang, H.F., et al., 2013.Large Magnesium Isotope Fractionation in Peridotite Xenoliths from Eastern North China Craton:Product of Melt-Rock Interaction.Geochimica et Cosmochimica Acta, 115(5):241-261.https://doi.org/10.1016/j.gca.2013.04.011 https://www.sciencedirect.com/science/article/pii/S0016703713002263
|
Xiao, Y.L., Sun, H., Gu, H.O., et al., 2015.Fluid/Melt in Continental Deep Subduction Zones:Compositions and Related Geochemical Fractionations.Science China:Earth Sciences, 45(8):1063-11087 (in Chinese).
|
Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008
|
Xu, X.Z., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Ultrahigh Pressure and Highly Reduced Minerals in Podiform Chromitites and Associated Mantle Peridotites of the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):686-700. https://doi.org/10.1016/j.gr.2014.05.010
|
Yamamoto, S., Komiya, T., Hirose, K., et al., 2009.Coesite and Clinopyroxene Exsolution Lamellae in Chromites:In-Situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Lithos, 109(3-4):314-322. https://doi.org/10.1016/j.lithos.2008.05.003
|
Yang, J.S., Ba, D.Z., Xu, X.Z., et al., 2010.A Restudy of Podiform Chromie Deposits and Their Ore-Prospecting Vista in China.Geology in China, 37(4):1141-1150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004030.htm
|
Yang, J.S., Bai, W.J., Fang, Q.S., et al., 2008.Ultrahigh-Pressure Minerals and New Minerals from the Luobusa Ophiolitic Chromitites in Tibet:A Review.Acta Geoscientica Sinica, 29(3):263-274 (in Chinese with English abstract).
|
Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., et al., 2007.Diamond-and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet.Geology, 35(10):875-878.https://doi.org/10.1130/g23766a.1 doi: 10.1130/G23766A.1
|
Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Diamonds in Ophiolites.Elements, 10(2):127-130. https://doi.org/10.2113/gselements.10.2.127
|
Yang, J.S., Xu, X.Z., Rong, H., et al., 2013.Deep Minerals in Ophiolitic Mantle Peridotites:Discovery and Progress.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):159-170 (in Chinese with English abstract). http://www.pnas.org/content/104/22/9116.figures-only?related-urls=yesl104/22/9116
|
Young, E.D., Galy, A., 2004.The Isotope Geochemistry and Cosmochemistry of Magnesium.Reviews in Mineralogy and Geochemistry, 55(1):197-230. https://doi.org/10.2138/gsrmg.55.1.197
|
Zhang, H.L., Hirschmann, M.M., Cottrell, E., et al., 2017a.Effect of Pressure on Fe3+/∑Fe Ratio in a Mafic Magma and Consequences for Magma Ocean Redox Gradients.Geochimica et Cosmochimica Acta, 204:83-103. doi: 10.1016/j.gca.2017.01.023
|
Zhang, P.F., Zhou, M.F., Su, B.X., et al., 2017b.Iron Isotopic Fractionation and Origin of Chromitites in the Paleo-Moho Transition Zone of the Kop Ophiolite, NE Turkey.Lithos, 268-271:65-75. https://doi.org/10.1016/j.lithos.2016.10.019
|
Zhao, X.M., Zhang, H.F., Zhu, X.K., et al., 2010.Iron Isotope Variations in Spinel Peridotite Xenoliths from North China Craton:Implications for Mantle Metasomatism.Contributions to Mineralogy and Petrology, 160(1):1-14. https://doi.org/10.1007/s00410-009-0461-y
|
Zhao, X.M., Zhang, H.F., Zhu, X.K., et al., 2015.Effects of Melt Percolation on Iron Isotopic Variation in Peridotites from Yangyuan, North China Craton.Chemical Geology, 401:96-110. https://doi.org/10.1016/j.chemgeo.2015.02.031
|
Zhou, M.F., Robinson, P.T., Bai, W.J., 1994.Formation of Podiform Chromitites by Melt/Rock Interaction in the Upper Mantle.Mineralium Deposita, 29(1):98-101.https://doi.org/10.1007/bf03326400 doi: 10.1007/BF03326400
|
Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996.Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle.Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3
|
Zhou, M.F., Robinson, P.T., Malpas, J., et al., 2005.REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet.Journal of Petrology, 46(3):615-639.https://doi.org/10.1093/petrology/egh091
|
Zhou, M.F., Robinson, P.T., Su, B.X., et al., 2014.Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments.Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011
|
Zhou, M.F., Sun, M., Keays, R.R., et al., 1998.Controls on Platinum-Group Elemental Distributions of Podiform Chromitites:A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts.Geochimica et Cosmochimica Acta, 62(4):677-688.https://doi.org/10.1016/s0016-7037(97)00382-7 doi: 10.1016/S0016-7037(97)00382-7
|
鲍佩声, 2009.再论蛇绿岩中豆荚状铬铁矿的成因—质疑岩石/熔体反应成矿说.地质通报, 28(12):1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008
|
曹辉辉, 赵新苗, 张宏福, 2016.Fe同位素体系及其在地幔地球化学中的应用.矿物岩石地球化学通报, 35(5):1053-1064. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kydh201605039&dbname=CJFD&dbcode=CJFQ
|
何永胜, 胡东平, 朱传卫, 2015.地球科学中铁同位素研究进展.地学前缘, 22(5):54-71. https://www.researchgate.net/profile/Yongsheng_He/publication/282988768_Progress_of_iron_isotope_geochemistry_in_geoscience/links/566f78eb08ae486986b70ec2.pdf
|
黄方, 2011.高温下非传统稳定同位素分馏.岩石学报, 27(2):365-382. https://www.wenkuxiazai.com/doc/db853ca7524de518964b7da1.html
|
李曙光, 2015.深部碳循环的Mg同位素示踪.地学前缘, 22(5):143-159. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201505015&dbname=CJFD&dbcode=CJFQ
|
刘霞, 苏本勋, 白洋, 等, 2018.蛇绿岩中铬铁岩母岩浆的富Ca特征:矿物包裹体证据.地球科学, 43(4):1038-1050. http://www.earth-science.net/WebPage/Article.aspx?id=3785
|
王恒升, 白文吉, 王炳熙, 等, 1983.中国铬铁矿床及成因.北京:科学出版社, 32-59.
|
王希斌, 鲍佩声, 1987.豆荚状铬铁矿床的成因—以西藏自治区罗布莎铬铁矿床为例.地质科学, 22(2):166-181+201-202. https://www.wenkuxiazai.com/doc/796eaa00de80d4d8d15a4f45.html
|
肖益林, 孙贺, 顾海欧, 等, 2015.大陆深俯冲过程中的熔/流体成分与地球化学分异.中国科学:地球科学, 45(8):1063-1087.
|
杨经绥, 巴登珠, 徐向珍, 等, 2010.中国铬铁矿床的再研究及找矿前景.中国地质, 37(4):1141-1150. https://www.wenkuxiazai.com/doc/e1fea79ce87101f69f319553-4.html
|
杨经绥, 白文吉, 方青松, 等, 2008.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述).地球学报, 29(3):263-274. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb200803003&dbname=CJFD&dbcode=CJFQ
|
杨经绥, 徐向珍, 戎合, 等, 2013.蛇绿岩地幔橄榄岩中的深部矿物:发现与研究进展.矿物岩石地球化学通报, 32(2):159-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201302002
|