• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 4
    Apr.  2018
    Turn off MathJax
    Article Contents
    Meng Yuanku, Ma Shiwei, Xu Zhiqin, Chen Xijie, Ma Xuxuan, 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142-1163. doi: 10.3799/dqkx.2018.713
    Citation: Meng Yuanku, Ma Shiwei, Xu Zhiqin, Chen Xijie, Ma Xuxuan, 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142-1163. doi: 10.3799/dqkx.2018.713

    Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt

    doi: 10.3799/dqkx.2018.713
    • Received Date: 2017-12-15
    • Publish Date: 2018-04-15
    • The petrogenesis of Miocene porphyries is still under debate, involving four different genetic models, such as, partial melting of residual oceanic crust, partial melting of thickened lower crust, partial melting of sub-continental lithospheric mantle and partial melting of metasomatized mafic lower crust related to subducted fluids. In order to clarify the petrogenesis and tectonic setting, petrological analyses and zircon LA-ICP-MS U-Pb dating in this study were carried out. In addition, whole-rock major and trace elements were analyzed by means of XRF and ICP-MS methods. The results demonstrate that the porphyries formed at 16.7-14.4 Ma, showing adakitic geochemical features. Geochemical characteristics, trace elemental ratios and discrimination diagrams suggest that magma source of the granitoid porphyries was derived from partial melting of the lower juvenile crustal material, whereas magma source of gabbro diorite porphyrite was sourced from the enriched lithospheric mantle. Together with published data, it is proposed that the Qinghai-Tibetan plateau was in the tectonic transformation from compression to extension or strike-slip during 18-13 Ma in the early stage of Miocene. The ore-bearing porphyries ascended through vertical fractures or faults and mingled with mid-upper crustal material generating granite porphyry, monzonitic granite porphyry, granodiorite porphyry and quartz diorite porphyrite. On the contrary, the coeval magma derived from the lithosphere mantle formed gabbro diorite porphyrite. Ore-bearing hydrothermal fluid was driven by tectonic stress and heat flow from magma took place at the sandstone slate and hornfel of the Linbuzong Formation, and marble and limestone of the Duodigou Formation characterized by inter-bedded tectonic fracture belts and collapse locations of folds, forming skarn-type copper polymetallic ore deposits.

       

    • loading
    • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., et al., 2000.Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey.Journal of Volcanology and Geothermal Research, 102(1-2):67-95. https://doi.org/10.1016/s0377-0273(00)00182-7
      Black, L.P., Gulson, B.L., 1978.The Age of the Mud Tank Carbonatite, Strang Ways Range, Northern Territory.BMR Journal of Australian Geology and Geophysics, 3(3):227-232. http://www.researchgate.net/publication/301347326_The_age_of_the_Mud_Tank_carbonatite_Strangways_range_Northern_Territory
      Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https: //doi. org/10. 1016/B978-0-444-42148-7. 50008-3
      Chen, X.J., Xu, Z.Q., Meng, Y.K., et al., 2014.Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 30(8):2253-2268 (in Chinese with English abstract). http://www.researchgate.net/publication/295561425_Petrogenesis_of_Miocene_adakitic_diorite-porphyrite_in_middle_Gangdese_batholith_southern_Tibet_Constraints_from_geochemistry_geochronology_and_Sr-Nd-Hf_isotopes
      Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009.The Nature and Timing of Crustal Thickening in Southern Tibet:Geochemical and Zircon Hf Isotopic Constraints from Post-Collisional Adakites.Tectonophysics, 477(1-2):36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005.Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      Chung, S.L., Liu, D., Ji, J.Q., et al., 2003.Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31(11):1021-1024. https://doi.org/10.1130/g19796.1
      Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      Gao, Y.F., Hou, Z.Q., Kamber, B.S., et al., 2007.Adakite-Like Porphyries from the Southern Tibetan Continental Collision Zones:Evidence for Slab Melt Metasomatism.Contributions to Mineralogy and Petrology, 153(1):105-120. https://doi.org/10.1007/s00410-006-0137-9
      Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2012.Crustal Thickening Prior to 38 Ma in Southern Tibet:Evidence from Lower Crust-Derived Adakitic Magmatism in the Gangdese Batholith.Gondwana Research, 21(1):88-99. https://doi.org/10.1016/j.gr.2011.07.004
      Guo, Z.F., Wilson, M., Liu, J.Q., 2007.Post-Collisional Adakites in South Tibet:Products of Partial Melting of Subduction-Modified Lower Crust.Lithos, 96(1-2):205-224. https://doi.org/10.1016/j.lithos.2006.09.011
      Harrison, T.M., Yin, A., Grove, M., et al., 2000.The Zedong Window:A Record of Superposed Tertiary Convergence in Southeastern Tibet.Journal of Geophysical Research:Solid Earth, 105(B8):19211-19230. https://doi.org/10.1029/2000jb900078
      Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Economic Geology, 110:1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-west Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      Hou, Z.Q., Wang, E.Q., Mo, X.X., et al., 2008.Collisional Orogeny and Metallogenesis of the Tibetan Plateau.Geological Publishing House, Beijing (in Chinese).
      Hu, Y.B., Liu, J.Q., Ling, M.X., et al., 2015.The Formation of Qulong Adakites and Their Relationship with Porphyry Copper Deposit:Geochemical Constraints.Lithos, 220-223:60-80. https://doi.org/10.1016/j.lithos.2014.12.025
      Huang, Y.M., Hawkesworth, C., Smith, I., et al.2000.Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel New Zealand:Implications for Mantle Enrichment Processes.Chemical Geology, 64(3-4):219-238. https://doi.org/10.1016/S0009-2541(99)00145-X
      Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055
      Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009.Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet.Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      Ji, W.Q., Wu, F.Y., Liu, C.Z., et al., 2012.Early Eocene Crustal Thickening in Southern Tibet:New Age and Geochemical Constraints from the Gangdese Batholith.Journal of Asian Earth Sciences, 53(2):82-95. https://doi.org/10.1016/j.jseaes.2011.08.020
      Jiang, Y.H., Jiang, S.Y., Dai, B.Z., et al., 2009.Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China:Implications for a Continental Arc to Rifting.Lithos, 107(3-4):185-204. https://doi.org/10.1016/j.lithos.2008.10.006
      Johnson, K., Barnes, C.G., Miller, C.A., 1997.Petrology, Geochemistry, and Genesis of High-Al Tonalite and Trondhjemites of the Cornucopia Stock, Blue Mountains, Northeastern Oregon.Journal of Petrology, 38(11):1585-1611. doi: 10.1093/petroj/38.11.1585
      Li, G.M., Rui, Z.Y., Wang, G.M., et al., 2005.Molybdenite Re-Os Dating of Jiama and Zhibula Polymetallic Copper Deposits in the Gangdese Metallogenic Belt of Tibet and Its Significance.Mineral Deposits, 24(5):482-489 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200505002.htm
      Li, G.W., Kohn, B., Sandiford, M., et al., 2015a.Constraining the Age of Liuqu Conglomerate, Southern Tibet:Implications for Evolution of the India-Asia Collision Zone.Earth and Planetary Science Letters, 426:259-266. https://doi.org/10.1016/j.epsl.2015.06.010
      Li, G.W., Kohn, B., Sandiford, M., et al., 2016.Synorogenic Morphotectonic Evolution of the Gangdese Batholith, South Tibet:Insights from Low-Temperature Thermochronology.Geochemistry, Geophysics, Geosystems, 17(1):101-112. https://doi.org/10.1002/2015gc006047
      Li, J.X., Qin, K.Z., Li, G.M., et al., 2011.Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt, Southern Tibet:Melting of Thickened Juvenile Arc Lower Crust.Lithos, 126(3):265-277. https://doi.org/10.1016/j.lithos.2011.07.018
      Li, Y.L., Wang, C.S., Dai, J.G., et al., 2015b.Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen:A Review.Earth-Science Reviews, 143:36-61. https://doi.org/10.1016/j.earscirev.2015.01.001
      Ludwig, K. R., 2003. Use's Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Ma, S.W., Meng, Y.K., Xu, Z.Q., et al., 2017a.The Discovery of Late Triassic Mylonitic Granite and Geologic Significance in the Middle Gangdese Batholiths, Southern Tibet.Journal of Geodynamics, 104:49-64. https://doi.org/10.1016/j.jog.2016.10.007
      Ma, X.X., Xu, Z.Q., Chen, X.J., et al., 2017b.The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet.Journal of Earth Science, 28(2):265-282. doi: 10.1007/s12583-016-0925-8
      Ma, S.W., Xu, Z.Q., Zhang, Z.K., et al., 2016.Structural Deformation and Its Constraints of Mineralization of the Jiama Copper-Polymetallic Deposit, Southern Tibet.Acta Petrologica Sinica, 32(12):3781-3799 (in Chinese with English abstract). http://www.researchgate.net/publication/313309948_Structural_deformation_and_its_constrains_of_mineralization_of_the_Jiama_copper-polymetallic_deposit_southern_Tibet
      Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Meng, Y.K., 2016.Tectonic Evolution of the Southern Region in the Middle Gangdese Batholith, Southern Tibet (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Meng, Y.K., Xu, Z.Q., Chen, X.J., et al., 2015.Zircon Geochronology and Hf Isotopic Composition of Eocene Granite Batholith from Xaitongmoin in Middle Gangdise and Its Geological Significance.Geotectonica et Metallogenia, 39(5):933-948 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201505015
      Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016a.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet.Earth Science, 41(7):1081-1098 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.090
      Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016b.The 40Ar/39Ar Geochronological Constraints on the Xaitongmoin-Quxu Ductile Shear Zone in the Gangdese Batholith, Southern Tibet.Geological Review, 62(4):795-806 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2016.04.002
      Meng, Y.K., Xu, Z.Q., Santosh, M., et al., 2016.Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt.Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007
      Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Plateau.Geological Journal of China Universities, 17(3):351-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201103003.htm
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007.Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet.Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      Mo, X.X., Zhao, Z.D., Yu, X.H., et al., 2009.Cenozoic Collisional-Postcollisional Igneous Rocks in the Tibetan Plateau.Geological Publishing House, Beijing (in Chinese).
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080
      Patino Douce, A.E., 1999.What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?Geological Society, London, Special Publications, 168(1):55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
      Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/BF00384745
      Petford, N., Atherton, M., 1996.Na-Rich Partial Melts from Newly Underplated Basaltic Crust:The Cordillera Blanca Batholith, Peru.Journal of Petrology, 37(6):1491-1521. https://doi.org/10.1093/petrology/37.6.1491
      Qian, Y., Sun, F.Y., Li, B.L., et al., 2014.Early Permian-Late Triassic Magmatism in the Tuotuohe Region of the Qinghai-Tibet Plateau:Constraints on the Tectonic Evolution of the Western Segment of the Jinshajiang Suture.Acta Geologica Sinica (English Edition), 88(2):498-516. https://doi.org/10.1111/1755-6724.12210
      Qin, K.Z., Xia, D.X., Duo, J., et al., 2014.Porphyry and Skarn Cu-Molybdenum Deposit of Qulong, Tibet.Science Press, Beijing (in Chinese).
      Qin, Z.P., 2013.Genetic Model of the Jiama Copper-Polymetallic Ore Deposits, Tibet (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Qin, Z.P., Wang, X.W., Dor, J., et al., 2011.LA-ICP-MS U-Pb Zircon Age of Intermediate-Acidic Intrusive Rocks in Jiama of Tibet and Its Metallogenic Significance.Mineral Deposits, 30(2):339-348 (in Chinese with English abstract). http://www.researchgate.net/publication/285347618_LA-ICP-MS_U-Pb_zircon_age_of_intermediate-acidic_intrusive_rocks_in_Jiama_of_Tibet_and_its_metallogenic_significance
      Qu, X.M., Hou, Z.Q., Li, Y.G., 2004.Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau.Lithos, 74(3-4):131-148. https://doi.org/10.1016/j.lithos.2004.01.003
      Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
      Richards, J.P., Kerrich, R., 2007.Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis.Economic Geology, 102(4):537-576. https://doi.org/10.2113/gsecongeo.102.4.537
      Schiano, P., Monzier, M., Eissen, J.P., et al., 2010.Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes.Contributions to Mineralogy and Petrology, 60(2):297-312. https://doi.org/10.1007/s00410-009-0478-2
      Sun, J., Mao, J.W., Yao, F.J., et al., 2017.Relation between Magmatic Processes and Porphyry Copper-Gold Ore Formation, the Duolong District, Central Tibet.Acta Petrologica Sinica, 33(10):3217-3238 (in Chinese with English abstract).
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, X., Zheng, Y.Y., Xu, J., et al., 2017.Metallogenesis and Ore Controls of Cenozoic Porphyry Mo Deposits in the Gangdese Belt of Southern Tibet.Ore Geology Reviews, 81:996-1014. https://doi.org/10.1016/j.oregeorev.2016.01.009
      Tang, J.X., Deng, S.L., Zheng, W.B., et al., 2011.An Exploration Model for Jiama Copper Polymetallic Deposit in Maizhokunggar County, Tibet.Mineral Deposits, 30(2):179-196 (in Chinese with English abstract). http://www.researchgate.net/publication/312661222_An_exploration_model_for_Jiama_copper_polymetallic_deposit_in_Maizhokunggar_County_Tibet
      Tang, J.X., Duo, J., Liu, H.F., et al., 2012.Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4):393-410 (in Chinese with English abstract). http://www.oalib.com/paper/1559914
      Tang, J.X., Lang, X.H., Xie, F.W., et al., 2015.Geological Characteristics and Genesis of the Jurassic No.1 Porphyry Cu-Au Deposit in the Xiongcun District, Gangdese Porphyry Copper Belt, Tibet.Ore Geology Reviews, 70(4):438-456. https://doi.org/10.1016/j.oregeorev.2015.02.008
      Tang, J.X., Wang, D.H., Wang, X.W., et al., 2010.Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet.Acta Geoscientica Sinica, 31(4):495-506 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201004002.htm
      Wang, C., Ding, L., Zhang, L.Y., et al., 2016.Petrogenesis of Middle-Late Triassic Volcanic Rocks from the Gangdese Belt, Southern Lhasa Terrane:Implications for Early Subduction of Neo-Tethyan Oceanic Lithosphere.Lithos, 262:320-333. https://doi.org/10.1016/j.lithos.2016.07.021
      Wang, Q., 2016. Origin and Petrogenesis of the Post-Collisional Magmatism in Both North and South Sides of Lhasa Terrane (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wang, Q., Xu, J.F., Jian, P., et al., 2006.Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China:Implications for the Genesis of Porphyry Copper Mineralization.Journal of Petrology, 47(1):119-144. https://doi.org/10.1093/petrology/egi070
      Wang, R., Richards, J.P., Zhou, L.M., et al., 2015.The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet.Earth-Science Reviews, 150:68-94. https://doi.org/10.1016/j.earscirev.2015.07.003
      Williams, H., Turner, S., Kelley, S., et al., 2001.Age and Composition of Dikes in Southern Tibet:New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism.Geology, 29(4):188-193.https://doi.org/10.1130/0091-7613(2001)029<0339:aacodi>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0339:aacodi>2.0.co;2
      Xiong, X.L., Li, X.H., Xu, J.F., et al., 2003.Extremely High-Na Adakite-Like Magmas Derived from Alkali-Rich Basaltic Underplate:The Late Cretaceous Zhantang Andesites in the Huichang Basin, SE China.Geochemical Journal, 37(2):233-252. https://doi.org/10.2343/geochemj.37.233
      Xu, W. C., 2010. Spatial Variation of Zircon U-Pb Ages and Hf Isotopic Compositions of the Gangdese Granitoids and Its Geologic Implications (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Xu, Z.Q., Wang, Q., Li Z.H., et al., 2016.Indo-Asian Collision:Tectonic Transition from Compression to Strike Slip.Acta Geologica Sinica, 90(1):1-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.12639
      Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2011.On the Tectonics of the India-Asia Collision.Acta Geologica Sinica, 85(1):1-33 (in Chinese with English abstract). doi: 10.1111/acgs.2011.85.issue-1
      Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2012.Tectonic Background of Important Metallogenenic Belts in the Southern and Southeastern Tibetan Plateau and Ore Prospecting.Acta Geologica Sinica, 86(12):1857-1868 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201212002.htm
      Yang J.S., Xu, Z.Q., Geng, Q.R., et al., 2006.A Possible New HP/UHP (?) Metormorphic Belt in China:Discovery of Eclogite in the Lhasa Terrane, Tibet.Acta Geologica Sinica, 80(12):1787-1792 (in Chinese with English abstract).
      Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.026
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(28):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Ying, L.J., Tang, J.X., Wang, D.H., et al., 2009.Re-Os Isotopic Dating of Molybdenite in Skarn from the Jiama Copper Polymetallic Deposit of Tibet and Its Metallogenic Significance.Rock and Mineral Analysis, 28(3):265-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903022.htm
      Ying, L.J., Tang, J.X., Wang, D.H., et al., 2011.Zircon SHRIMP U-Pb Dating of Porphyry Vein from the Jiama Copper Polymetallic Deposits in Tibet and Its Significance.Acta Petrologica Sinica, 27(7):2095-2102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201107018.htm
      Ying, L.J., Wang, D.H., Tang, J.X., et al., 2010.Re-Os Dating of Molybdenite from the Jiama Copper Deposit in Tibet and Its Metallogenic Significance.Acta Geologica Sinica, 84(8):1165-1174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201008010.htm
      Zhang, K.J., 2004.Secular Geochemical Variations of the Lower Cretaceous Siliciclastic Rocks from Central Tibet (China) Indicate a Tectonic Transition from Continental Collision to Back-Arc Rifting.Earth and Planetary Science Letters, 229(1):73-89. https://doi.org/10.1016/j.epsl.2004.10.030
      Zhang, K.J., Cai, J.X., Zhang, Y.X., et al., 2006.Eclogites from Central Qiangtang, Northern Tibet (China) and Tectonic Implications.Earth and Planetary Science Letters, 245(3-4):722-729. https://doi.org/10.1016/j.epsl.2006.02.025
      Zhang, K.J., Xia, B., Zhang, Y.X., et al., 2014.Central Tibetan Meso-Tethyan Oceanic Plateau.Lithos, 210-211:278-288. https://doi.org/10.1016/j.lithos.2014.09.004
      Zhang, K.J., Xia, B.D., Wang, G.M., et al., 2004.Early Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and Tectonic Setting of Central Tibet, Western China.Geological Society of America Bulletin, 116(9-10):1202-1222. https://doi.org/10.1130/b25388.1
      Zhang, K.J., Zhang, Y.X., Li, B., et al., 2007.Nd Isotopes of Siliciclastic Rocks from Tibet, Western China:Constraints on Provenance and Pre-Cenozoic Tectonic Evolution.Earth and Planetary Science Letters, 256(3-4):604-616. https://doi.org/10.1016/j.epsl.2007.02.014
      Zhang, K.J., Zhang, Y.X., Tang, X.C., et al., 2012.Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision.Earth-Science Reviews, 114(3-4):236-249. https://doi.org/10.1016/j.earscirev.2012.06.001
      Zheng, W. B., 2012. The Study on Metallogenic Model and Prospecting Pattern for Jiama Polymetallic Copper Deposit, Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zheng, W.B., Tang, J.X., Zhong, K.H., et al., 2016.Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China.Ore Geology Reviews, 74:151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024
      Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014.Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet:Implications for Eocene and Miocene Magma Sources and Resource Potential.Journal of Asian Earth Sciences, 79:842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
      Zhong, K.H., Li, L., Zhou, H.W., et al., 2012.Features of Jiama (Gyama)-Kajunguo Thrust-Gliding Nappe Tectonic System in Tibet.Acta Geoscientica Sinica, 33(4):411-423 (in Chinese with English abstract). https://www.researchgate.net/publication/289410495_Features_of_Jiama-Kajunguo_thrust-gliding_nappe_tectonic_system_in_TibetJ?ev=auth_pub
      Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2008.Hotspot-Ridge Interaction for the Evolution of Neo-Tethys:Insights from the Late Jurassic-Early Cretaceous Magmatism in Southern Tibet.Acta Petrologica Sinica, 24(2):225-237 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200802006.htm
      Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2015.Magmatic Record of India-Asia Collision.Scientific Reports, (5):14289. https://doi.org/10.1038/srep14289
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8): 2253-2268. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140810&journal_id=ysxb&year_id=2014
      侯增谦, 王二七, 莫宣学, 等, 2008.青藏高原碰撞造山与成矿作用.北京:地质出版社.
      李光明, 芮宗瑶, 王高明, 等, 2005.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义.矿床地质, 24(5): 481-489. http://d.old.wanfangdata.com.cn/Periodical/kcdz200505002
      马士委, 许志琴, 张忠坤, 等, 2016.藏南甲玛铜多金属矿床构造变形及其对成矿的制约.岩石学报, 32(12): 3781-3799. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161215
      孟元库, 2016. 藏南冈底斯带中段南缘构造演化(博士学位论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056636.htm
      孟元库, 许志琴, 陈希节, 等, 2015.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义.大地构造与成矿学, 39(5): 933-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201505015
      孟元库, 许志琴, 马士委, 等, 2016a.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7): 1081-1098. https://doi.org/10.3799/dqkx.2016.090
      孟元库, 许志琴, 马士委, 等, 2016b.藏南冈底斯地体谢通门-曲水韧性剪切带40Ar/39Ar年代学约束.地质论评, 62(4): 795-806. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201604002
      莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3): 351-367. http://www.cqvip.com/QK/90539X/201103/39866061.html
      莫宣学, 赵志丹, 喻学惠, 等, 2009.青藏高原新生代碰撞-后碰撞火成岩.北京:地质出版社.
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      秦克章, 夏代祥, 多吉, 等, 2014.西藏驱龙斑岩-夕卡岩铜钼矿床.北京:科学出版社.
      秦志鹏, 2013. 西藏甲玛铜多金属矿床成因模式(博士学位论文). 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1013263626.htm
      秦志鹏, 汪雄武, 多吉, 等, 2011.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 30(2): 339-348. http://d.old.wanfangdata.com.cn/Periodical/kcdz201102014
      孙嘉, 毛景文, 姚佛军, 等, 2017.西藏多龙矿集区岩浆岩成因与成矿作用关系研究.岩石学报, 33(10): 3217-3238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710016
      唐菊兴, 邓世林, 郑文宝, 等, 2011.西藏墨竹工卡县甲玛铜多金属矿床勘查模型.矿床地质, 30(2): 179-196. http://d.old.wanfangdata.com.cn/Periodical/kcdz201102002
      唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4): 393-410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204003.htm
      唐菊兴, 王登红, 汪雄武, 等, 2010.西藏甲玛铜多金属矿矿床地质特征及其矿床模型.地球学报, 31(4): 495-506. http://d.old.wanfangdata.com.cn/Periodical/dqxb201004002
      王青, 2016. 拉萨地体南北两侧碰撞后岩浆作用的岩浆起源和岩石成因(博士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067934.htm
      徐旺春, 2010. 西藏冈底斯花岗岩类锆石U-Pb年龄和Hf同位素组成的空间变化及其地质意义(博士学位论文). 武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250454.htm
      许志琴, 王勤, 李忠海, 等, 2016.印度-亚洲碰撞:从挤压到走滑的构造转换.地质学报, 90(1): 1-23. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm
      许志琴, 杨经绥, 李海兵, 等, 2011.印度-亚洲碰撞大地构造.地质学报, 85(1): 1-33. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DIDD201108001005.htm
      许志琴, 杨经绥, 李文昌, 等, 2012.青藏高原南部与东南部重要成矿带的大地构造定格与找矿前景.地质学报, 86(12): 1857-1868. doi: 10.3969/j.issn.0001-5717.2012.12.001
      杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带--青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12): 1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001
      杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3): 339-356. https://doi.org/10.3799/dqkx.2017.026
      应立娟, 唐菊兴, 王登红, 等, 2009.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义.岩矿测试, 28(3): 265-268. http://d.old.wanfangdata.com.cn/Periodical/ykcs200903014
      应立娟, 唐菊兴, 王登红, 等, 2011.西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系.岩石学报, 27(7): 2095-2102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107017
      应立娟, 王登红, 唐菊兴, 等, 2010.西藏墨竹工卡县甲玛铜多金属矿不同矿石中辉钼矿Re-Os同位素定年及其成矿意义.地质学报, 84(8): 1165-1174. http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=2009058
      郑文宝, 2012. 西藏甲玛铜多金属矿床成矿模式与找矿模型(博士学位论文). 成都: 成都理工大学. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2216090
      钟康惠, 李磊, 周慧文, 等, 2012.西藏甲玛-卡军果推-滑覆构造系特征.地球学报, 33(4): 411-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201204003
      朱弟成, 莫宣学, 王立全, 等, 2008.新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论.岩石学报, 24(2): 225-237. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20080204&journal_id=ysxb&year_id=2008
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (4186) PDF downloads(69) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return