• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 3
    Mar.  2018
    Turn off MathJax
    Article Contents
    Wang Shujie, Zhai Shikui, Yu Zenghui, Guo Kun, Zhang Xia, 2018. Reflections on Model of Modern Seafloor Hydrothermal System. Earth Science, 43(3): 835-850. doi: 10.3799/dqkx.2018.907
    Citation: Wang Shujie, Zhai Shikui, Yu Zenghui, Guo Kun, Zhang Xia, 2018. Reflections on Model of Modern Seafloor Hydrothermal System. Earth Science, 43(3): 835-850. doi: 10.3799/dqkx.2018.907

    Reflections on Model of Modern Seafloor Hydrothermal System

    doi: 10.3799/dqkx.2018.907
    • Received Date: 2017-11-23
    • Publish Date: 2018-03-15
    • Modern seafloor hydrothermal activity is generally accompanied by magmatism. Traditional hydrothermal system model hypothesizes that seawater penetrates through the rifts or cracks, then is heated and reacts with the surrounding rocks gradually leaching out metal elements from the rocks and resulting in the formation of metal-rich, acidic and reductive hydrothermal fluid. Subsequently, the heated fluid moves up along a series of fissures and erupts directly out of the ocean floor leading to precipitations of hydrothermal sulfides.This model reasonably accounts for the existence of fluid, channels and heat sources which are the three fundamental elements of modern seafloor hydrothermal system, and is in accord with many phenomena we have observed so far. However, differences in rock permeability, hydrothermal fluid properties, thermal fluid ecosystem and hydrothermal product indicate that there is possibly another injected circulation pattern for modern seafloor hydrothermal systems, which means the hydrothermal fluid is derived from the direct injection of fluid and volatile components from the deep magma chamber. Accordingly, it is inferred that there possibly are two models for modern seafloor hydrothermal systems:one is the shallow circulation mode, namely the traditional mode of hydrothermal circulation; the other is a magmatic hydrothermal injection mode ("injection model"). In the environment of strong magmatism and well-developed fracture, two modes may exist simultaneously, and the double diffusive convection circulation model is proposed. The double diffusive convection circulation model can be used to explain a variety of phenomena and facts recently discovered in the study of modern seafloor hydrothermal system. Moreover, it is pointed out that the tectonic background of the subduction and the mixing of materials from both subduction component and continental crust are also considered in the study of the magmatism and hydrothermal activity in back-arc basin. Meanwhile, a theoretical model has been constructed for the sea-floor hydrothermal system in back-arc basin taking the Okinawa trough as an example.

       

    • loading
    • Abers, G.A., van Keken, P.E.V., Kneller, E.A., et al., 2006.The Thermal Structure of Subduction Zones Constrained by Seismic Imaging:Implications for Slab Dehydration and Wedge Flow.Earth and Planetary Science Letters, 241(3-4):387-397. https://doi.org/10.1016/j.epsl.2005.11.055
      Alt, J.C., 1995.Subseafloor Processes in Mid-Ocean Ridge Hydrothennal Systems.Geophysical Monograph Series, London, 85-114. https://doi.org/10.1029/gm091p0085
      Alt, J.C., Anderson, T.F., Bonnell, L., et al., 1989.Mineralogy, Chemistry and Stable Isotopic Compositions of Hydrothermally Altered Sheeted Dikes:ODP Hole 504B, Leg 111.Proceedings of the Ocean Drilling Program, 111:27-40. https://doi.org/10.2973/odp.proc.sr.111.114.1989
      Alt, J.C., Laverne, C., Vanko, D.A., et al., 1996.Hydrothermal Alteration of a Section of Upper Oceanic Crust in the Eastern Equatorial Pacific:A Synthesis of Results from Site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148).Proceedings of the Ocean Drilling Program, 148:417-434. https://doi.org/10.2973/odp.proc.sr.148.159.1996
      Altwegg, K., Balsiger, H., Bar-Nun, A., et al., 2014.67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a High D/H Ratio.Science, 347(6220):1261952. https://doi.org/10.1126/science.1261952
      Anderson, R.N., Hobart, M.A., 1976.The Relation between Heat Flow, Sediment Thickness, and Age in the Eastern Pacific.Journal of Geophysical Research, 81(17):2968-2989. https://doi.org/10.1029/jb081i017p02968
      Andrews, A.J., Fyfe, W.S., 1976.Metamorphism and Massive Sulphide Generation in Oceanic Crust.Geoscience Canada, 3(2):84-94. https://doi.org/10.12789/gs.v3i2.1139
      Bai, Q., Kohlstedt, D.L., 1992.Substantial Hydrogen Solubility in Olivine and Implications for Water Storage in the Mantle.Nature, 357(6380):672-674. https://doi.org/10.1038/357672a0
      Bard, J.P., 1984.Petrology of the Ocean Floor.Earth-Science Reviews, 21(4):305. https://doi.org/10.1016/0012-8252(84)90068-0
      Barriga, F., Fouquet, Y., Almeida, A., et al., 1998.Discovery of the Saldanha Hydrothermal Field on the Famous Segment of the MAR (36°30'N).EOS Trans.Am.Geophys.Union, 79:67.
      Becker, K., 1985.Large-Scale Electrical Resistivity and Bulk Porosity of the Oceanic Crust, Deep Sea Drilling Project Hole 504B, Costa Rica Rift.Initial Reports of the Deep Sea Drilling Project, New York, 419-427. https://doi.org/10.2973/dsdp.proc.83.124.1985
      Bell, D.R., 1992.Water in Mantle Minerals.Nature, 357(6380):646-647. https://doi.org/10.1038/357646a0
      Bell, D.R., Rossman, G.R., 1992.Water in Earth's Mantle:The Role of Nominally Anhydrous Minerals.Science, 255(5050):1391-1397. https://doi.org/10.1126/science.255.5050.1391
      Bizimis, M., Peslier, A.H., 2015.Water in Hawaiian Garnet Pyroxenites:Implications for Water Heterogeneity in the Mantle.Chemical Geology, 397:61-75. https://doi.org/10.1016/j.chemgeo.2015.01.008
      Bourdon, B., Turner, S., Dosseto, A., 2003.Dehydration and Partial Melting in Subduction Zones:Constraints from U-Series Disequilibria.Journal of Geophysical Research:Solid Earth, 108(B6). https://doi.org/10.1029/2002jb001839
      Converse, D.R., Holland, H.D., Edmond, J.M., 1984.Flow Rates in the Axial Hot Springs of the East Pacific Rise (21°N):Implications for the Heat Budget and the Formation of Massive Sulfide Deposits.Earth and Planetary Science Letters, 69(1):159-175. https://doi.org/10.1016/0012-821x(84)90080-3
      Corliss, J.B., Dymond, J., Gordon, L.I., et al., 1979.Submarine Thermal Springs on the Galapagos Rift.Science, 203(4385):1073-1083. https://doi.org/10.1126/science.203.4385.1073
      Cottin, H., 2015. 67P/Churyumov-Gerasimenko. https://en.wikipedia.org/wiki/67P/Churyumov%E2%80%93Gerasimenko
      Dick, H.J.B., Lin, J., Schouten, H., 2003.An Ultraslow-Spreading Class of Ocean Ridge.Nature, 426(6965):405-412. https://doi.org/10.1038/nature02128
      Doucet, L.S., Peslier, A.H., Ionov, D.A., et al., 2014.High Water Contents in the Siberian Cratonic Mantle Linked to Metasomatism:An FTIR Study of Udachnaya Peridotite Xenoliths.Geochimica et Cosmochimica Acta, 137:159-187. https://doi.org/10.1016/j.gca.2014.04.011
      Edmond, J.M., von Damm, K., 1983.Hot Springs on the Ocean Floor.Sci.Am.(United States), 248(4):78-93. https://doi.org/10.1038/scientificamerican0483-78
      Edmond, J.M., von Damm, K.L., McDuff, R.E., et al., 1982.Chemistry of Hot Springs on the East Pacific Rise and Their Effluent Dispersal.Nature, 297(5863):187-191. https://doi.org/10.1038/297187a0
      Elder, J.W., 2013.Physical Processes in Geothermal Areas.Geophysical Monograph Series, 211-239. https://doi.org/10.1029/gm008p0211
      Evans, R.L., Hirth, G., Baba, K., et al., 2005.Geophysical Evidence from the MELT Area for Compositional Controls on Oceanic Plates.Nature, 437(7056):249-252. https://doi.org/10.1038/nature04014
      Faure, G., 1987.Principles of Isotope Geology.John Wiley & Sons Inc., 14(2):190-191. https://doi.org/10.1016/0016-7037(87)90361-9
      Finger, L.W., Prewitt, C.T., 1989.Predicted Compositions for High-Density Hydrous Magnesium Silicates.Geophysical Research Letters, 16(12):1395-1397. https://doi.org/10.1029/gl016i012p01395
      Franklin, J.M., Lydon, J.W., Sangster, D.F., 1981.Volcanic-Associated Massive Sulphide Deposits.Economic Geology, 75:485-627.
      Fyfe, W.S., 1974.Heats of Chemical Reactions and Submarine Heat Production.Geophysical Journal International, 37(1):213-215. https://doi.org/10.1111/j.1365-246x.1974.tb02454.x
      Gamo, T., Masuda, H., Yamanaka, T., et al., 2004.Discovery of a New Hydrothermal Venting Site in the Southernmost Mariana Arc:Al-Rich Hydrothermal Plumes and White Smoker Activity Associated with Biogenic Methane.Geochemical Journal, 38(6):527-534. https://doi.org/10.2343/geochemj.38.527
      Germanovich, L.N., Lowell, R.P., Astakhov, D.K., 2000.Stress-Dependent Permeability and the Formation of Seafloor Event Plumes.Journal of Geophysical Research:Solid Earth, 105(B4):8341-8354. https://doi.org/10.1029/1999jb900431
      Glasby, G.P., Notsu, K., 2003.Submarine Hydrothermal Mineralization in the Okinawa Trough, SW of Japan:An Overview.Ore Geology Reviews, 23(3-4):299-339. https://doi.org/10.1016/j.oregeorev.2003.07.001
      Gosnell, S. R., 2006. Numerical Modeling of Induced Diffuse Flow in Seafloor Hydrothermal Systems (Dissertation). Georgia Institute of Technology, Georgia.
      Green, D.H., Hibberson, W.O., Kovács, I., et al., 2010.Water and Its Influence on the Lithosphere-Asthenosphere Boundary.Nature, 467(7314):448-451. https://doi.org/10.1038/nature09369
      Green, D.H., Liebermann, R.C., 1976.Phase Equilibria and Elastic Properties of a Pyrolite Model for the Oceanic Upper Mantle.Tectonophysics, 32(1-2):61-92. https://doi.org/10.1016/0040-1951(76)90086-x
      Guerin, G., Goldberg, D.S., Iturrino, G.J., 2008.Velocity and Attenuation in Young Oceanic Crust:New Downhole Log Results from DSDP/ODP/IODP Holes 504B and 1256D.Geochemistry, Geophysics, Geosystems, 9(12):178-196. https://doi.org/10.1029/2008gc002203
      Guo, K., Zhai, S.K., Yu, Z.H., et al., 2016.Determination and Tectonic Significance of Volcanic Rock Series in the Okinawa Trough.Earth Science, 41(10):1655-1664.(in Chinese with English abstract).
      Hacker, B.R., Peacock, S.M., Abers, G.A., et al., 2003.Subduction Factory 2 are Intermediate-Depth Earthquakes in Subducting Slabs Linked to Metamorphic Dehydration Reactions? Journal of Geophysical Research:Solid Earth, 108(B1). https://doi.org/10.1029/2001jb001129
      Hallis, L.J., Huss, G.R., Nagashima, K., et al., 2015.Evidence for Primordial Water in Earth's Deep Mantle.Science, 350(6262):795-797. https://doi.org/10.1126/science.aac4834
      Hannington, M. D., de Ronde, C. D. J., Petersen, S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Washington, D. C., 111-141.
      Hannington, M.D., Jonasson, I.R., Herzig, P.M., et al., 1995.Physical and Chemical Processes of Seafloor Mineralization at Mid-Ocean Ridges.Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions, American Geophysical Union, Washington, D.C., 115-157. https://doi.org/10.1029/GM091p0115
      Hashimoto, J., Ohta, S., Gamo, T., et al., 2001a.Hydrothermal Vents and Associated Biological Communities in the Indian Ocean.Inter Ridge News, 10(1):21-22. doi: 10.1007/978-4-431-54865-2_12
      Hashimoto, J., Ohta, S., Gamo, T., et al., 2001b.First Hydrothermal Vent Communities from the Indian Ocean Discovered.Zoological Science, 18(5):717-721. https://doi.org/10.2108/zsj.18.717
      Herzig, P.M., Hannington, M.D., Arribas, Jr.A., 1998.Sulfur Isotopic Composition of Hydrothermal Precipitates from the Lau Back-Arc:Implications for Magmatic Contributions to Seafloor Hydrothermal Systems.Mineralium Deposita, 33(3):226-237. https://doi.org/10.1007/s001260050143
      Hill, R.E.T., Boettcher, A.L., 1970.Water in the Earth's Mantle:Melting Curves of Basalt-Water and Basalt-Water-Carbon Dioxide.Science, 167(3920):980-982. https://doi.org/10.1126/science.167.3920.980
      Hirschmann, M.M., 2006.Water, Melting, and the Deep Earth H2O Cycle.Annual Review of Earth and Planetary Sciences, 34(1):629-653. https://doi.org/10.1146/annurev.earth.34.031405.125211
      Hirth, G., Kohlstedt, D., 2003.Rheology of the Upper Mantle and the Mantle Wedge:A View from the Experimentalists.Geophysical Monograph Series, 83-105. https://doi.org/10.1029/138gm06
      Hirth, G., Kohlstedt, D.L., 1996.Water in the Oceanic Upper Mantle:Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere.Earth and Planetary Science Letters, 144(1-2):93-108. https://doi.org/10.1016/0012-821x(96)00154-9
      Höink, T., Jellinek, A.M., Lenardic, A., 2011.Viscous Coupling at the Lithosphere-Asthenosphere Boundary.Geochemistry, Geophysics, Geosystems, 12(10). https://doi.org/10.1029/2011gc003698
      Inoue, T., Wada, T., Sasaki, R., et al., 2010.Water Partitioning in the Earth's Mantle.Physics of the Earth and Planetary Interiors, 183(1-2):245-251. https://doi.org/10.1016/j.pepi.2010.08.003
      Joint Oceangraphic Institute Incorporated, 1990.Long Range Plan, Ocean Drilling Program, New York.
      Jia, S.F., 2015.Where is the Water on Earth Come from?The Encyclopedia of Knowledge, (3):22-23 (in Chinese). https://www.coursehero.com/file/p2ffeen/Where-did-the-water-on-Earth-come-from-8-Habitable-zone-Water-is-common-in-the/
      Jørgensen, B.B., d'Hondt, S., 2006.Ecology:A Starving Majority Deep beneath the Seafloor.Science, 314(5801):932-934. https://doi.org/10.1126/science.1133796
      Karato, S.I., 2010.Rheology of the Deep Upper Mantle and Its Implications for the Preservation of the Continental Roots:A Review.Tectonophysics, 481(1-4):82-98. https://doi.org/10.1016/j.tecto.2009.04.011
      Karato, S.I., 2012.On the Origin of the Asthenosphere.Earth and Planetary Science Letters, 321-322:95-103. https://doi.org/10.1016/j.epsl.2012.01.001
      Karato, S.I., Jung, H., 2003.Effects of Pressure on High-Temperature Dislocation Creep in Olivine.Philosophical Magazine, 83(3):401-414. https://doi.org/10.1080/0141861021000025829
      Kelley, D.S., Karson, J.A., Blackman, D.K., et al., 2001.An Off-Axis Hydrothermal Vent Field near the Mid-Atlantic Ridge at 30°N.Nature, 412(6843):145-149. https://doi.org/10.1038/35084000
      Kim, J., Lee, I., Lee, K.Y., 2004.S, Sr, and Pb Isotopic Systematics of Hydrothermal Chimney Precipitates from the Eastern Manus Basin, Western Pacific:Evaluation of Magmatic Contribution to Hydrothermal System.Journal of Geophysical Research, 109(B12):159-163. https://doi.org/10.1029/2003jb002912
      Kohlstedt, D.L., Keppler, H., Rubie, D.C., 1996.Solubility of Water in the α, β and γ Phases of (Mg, Fe)2 SiO4.Contributions to Mineralogy and Petrology, 123(4):345-357. https://doi.org/10.1007/s004100050161
      Kormas, K.A., Tivey, M.K., von Damm, K.V., et al., 2006.Bacterial and Archaeal Phylotypes Associated with Distinct Mineralogical Layers of a White Smoker Spire from a Deep-Sea Hydrothermal Vent Site (9°N, East Pacific Rise).Environmental Microbiology, 8(5):909-920. https://doi.org/10.1111/j.1462-2920.2005.00978.x
      Kushiro, I., 1970.Stability of Amphibole and Phlogopite in the Upper Mantle.Carnegie Inst.Washington Yearb., 68:245-247.
      Kushiro, I., Syono, Y., Akimoto, S.I., 1968.Melting of a Peridotite Nodule at High Pressures and High Water Pressures.Journal of Geophysical Research, 73(18):6023-6029. https://doi.org/10.1029/jb073i018p06023
      Lambert, I.B., Wyllie, P.J., 1970.Low-Velocity Zone of the Earth's Mantle:Incipient Melting Caused by Water.Science, 169(3947):764-766. https://doi.org/10.1126/science.169.3947.764
      Large, R.R., 1992.Australian Volcanic-Hosted Massive Sulfide Deposits:Features, Styles, and Genetic Models.Economic Geology, 87(3):471-510. https://doi.org/10.2113/gsecongeo.87.3.471
      Li, H.M., Zhai, S.K., Tao, C.H., et al., 2009.Advances on the Magmatism Processes in the Subduction Zones.Advances in Marine Science, 27(1):98-105(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-6647.2009.01.013
      Li, W.Y., 2010.Hydrothermal Mineralization on the Modern Seafloor.Journal of Earth Sciences and Environment, 32(1):15-23(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-6561.2010.01.002
      Li, Y.X., 1984.The Origin of Water on the Earth and Genesis of Underground Water.Journal of Xi'an College of Geology, (2):80-87 (in Chinese).
      Lister, C.R.B., 1980.Heat Flow and Hydrothermal Circulation.Annual Review of Earth and Planetary Sciences, 8(1):95-117. https://doi.org/10.1146/annurev.ea.08.050180.000523
      Liu, L.G., 1987.Effects of H2O on the Phase Behaviour of the Forsterite-Enstatite System at High Pressures and Temperatures and Implications for the Earth.Physics of the Earth and Planetary Interiors, 49(1/2):142-167. https://doi.org/10.1016/0031-9201(87)90138-5
      Lowell, R.P., 2002.Seafloor Hydrothermal Systems Driven by the Serpentinization of Peridotite.Geophysical Research Letters, 29(11):26-1. https://doi.org/10.1029/2001gl014411
      Lowell, R.P., Germanovich, L.N., 2004.Hydrothermal Processes at Mid-Ocean Ridges:Results from Scale Analysis and Single-Pass Models.Mid-Ocean Ridges, 219-244. https://doi.org/10.1029/148GM09
      Mei, S., Kohlstedt, D.L., 2000a.Influence of Water on Plastic Deformation of Olivine Aggregates:1.Diffusion Creep Regime.Journal of Geophysical Research:Solid Earth, 105(B9):21457-21469. https://doi.org/10.1029/2000jb900179
      Mei, S., Kohlstedt, D.L., 2000b.Influence of Water on Plastic Deformation of Olivine Aggregates:2.Dislocation Creep Regime.Journal of Geophysical Research:Solid Earth, 105(B9):21471-21481. https://doi.org/10.1029/2000jb900180
      Mével, C., 2003.Serpentinization of Abyssal Peridotites at Mid-Ocean Ridges.Comptes Rendus Geoscience, 335(10/11):825-852. https://doi.org/10.1016/j.crte.2003.08.006
      Newmark, R.L., Anderson, R.N., Moos, D., et al., 1985.Structure, Porosity and Stress Regime of the Upper Oceanic Crust:Sonic and Ultrasonic Logging of DSDP Hole 504B.Tectonophysics, 118(1/2):1-42. https://doi.org/10.1016/0040-1951(85)90153-2
      Ohira, I., Ohtani, E., Sakai, T., et al., 2014.Stability of a Hydrous Δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle.Earth and Planetary Science Letters, 401:12-17. https://doi.org/10.13039/501100001691
      Ohtani, E., 2015.Hydrous Minerals and the Storage of Water in the Deep Mantle.Chemical Geology, 418:6-15. https://doi.org/10.13039/501100003443
      Parsons, B., Sclater, J.G., 1977.An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age.Journal of Geophysical Research, 82(5):803-827. https://doi.org/10.1029/jb082i005p00803
      Peacock, S.M., 1999.Seismic Consequences of Warm versus Cool Subduction Metamorphism:Examples from Southwest and Northeast Japan.Science, 286(5441):937-939. https://doi.org/10.1126/science.286.5441.937
      Pearson, D.G., Brenker, F.E., Nestola, F., et al., 2014.Water and Slabs in the Transition Zone-Hydrous Ringwoodite in Diamond.AGU Fall Meeting Abstracts, 1:1. http://adsabs.harvard.edu/abs/2014AGUFMDI32A..01P
      Pedersen, R.B., Furnes, H., 2001.Nd-and Pb-Isotopic Variations through the Upper Oceanic Crust in DSDP/ODP Hole 504B, Costa Rica Rift.Earth and Planetary Science Letters, 189(3/4):221-235. https://doi.org/10.1016/s0012-821x(01)00349-1
      Perfit, M.R., Davidson, J.P., 2000.Plate Tectonics and Volcanism.Encyclopedia of Volcanoes.Elsevier, Amsterdam, 89-113. https://doi.org/10.1016/B978-0-12-385938-9.00003-1
      Peslier, A.H., 2010.A Review of Water Contents of Nominally Anhydrous Natural Minerals in the Mantles of Earth, Mars and the Moon.Journal of Volcanology and Geothermal Research, 197(1/2/3/4):239-258. https://doi.org/10.1016/j.jvolgeores.2009.10.006
      Pezard, P.A., 1990.Electrical Properties of Mid-Ocean Ridge Basalt and Implications for the Structure of the Upper Oceanic Crust in Hole 504B.Journal of Geophysical Research, 95(B6):9237. https://doi.org/10.1029/jb095ib06p09237
      Presnall, D.C., Gudfinnsson, G.H., 2005.Carbonate-Rich Melts in the Oceanic Low-Velocity Zone and Deep Mantle.Geological Society of America Special Papers, 388:207-216. https://doi.org/10.1130/2005.2388(13)
      Ragozin, A.L., Karimova, A.A., Litasov, K.D., et al., 2014.Water Content in Minerals of Mantle Xenoliths from the Udachnaya Pipe Kimberlites (Yakutia).Russian Geology and Geophysics, 55(4):428-442. https://doi.org/10.1016/j.rgg.2014.03.002
      Revelle, R., Maxwell, A.E., 1952.Heat Flow through the Floor of the Eastern North Pacific Ocean.Nature, 170(4318):199-200. https://doi.org/10.1038/170199a0
      Ringwood, A.E., 1969.Composition and Evolution of the Upper Mantle.The Earth's Crust and Upper Mantle.Wiley Online, 1-17. https://doi.org/10.1029/GM013p0001
      Rona, P.A., 1976.Pattern of Hydrothermal Mineral Deposition:Mid-Atlantic Ridge Crest at Latitude 26°N.Marine Geology, 21(4):59-66. https://doi.org/10.1016/0025-3227(76)90009-8
      Rona, P.A., 1984.Hydrothermal Mineralization at Seafloor Spreading Centers.Earth-Science Reviews, 20(1):1-104. https://doi.org/10.1016/0012-8252(84)90080-1
      Rona, P.A., Widenfalk, L., Boström, K., 1987.Serpentinized Ultramafics and Hydrothermal Activity at the Mid-Atlantic Ridge Crest near 15°N.Journal of Geophysical Research, 92(B2):1417. https://doi.org/10.1029/jb092ib02p01417
      Rossman, G.R., 1996.Studies of OH in Nominally Anhydrous Minerals.Physics and Chemistry of Minerals, 23(4/5):299-304. https://doi.org/10.1007/bf00207777
      Rossman, G.R., 2006.Analytical Methods for Measuring Water in Nominally Anhydrous Minerals.Reviews in Mineralogy and Geochemistry, 62(1):1-28. https://doi.org/10.2138/rmg.2006.62.1
      Rossvra, N.G.R., Svrvrn, J.R., 1990.Hydroxyl Contents of Accessory Minerals in Mantle Eclogites and Related Rocks.American Mineralogist, 75(5):775-780. http://rruff.info/doclib/am/vol75/AM75_775.pdf
      Roussel, E.G., Bonavita, M.A.C., Querellou, J., et al., 2008.Extending the Sub-Sea-Floor Biosphere.Science, 320(5879):1046-1046. https://doi.org/10.1126/science.1154545
      Santelli, C.M., Orcutt, B.N., Banning, E., et al., 2008.Abundance and Diversity of Microbial Life in Ocean Crust.Nature, 453(7195):653-656. https://doi.org/10.1038/nature06899
      Schmidt, R., Schmincke, H.U., 2000.Seamounts and Island Building.Encyclopedia of Volcanoes.Elsevier, Amsterdam, 383-402. https://www.sciencedirect.com/science/article/pii/B9780123859389000225
      Schroeder, T., John, B., Frost, B.R., 2002.Geologic Implications of Seawater Circulation through Peridotite Exposed at Slow-Spreading Mid-Ocean Ridges.Geology, 30(4):367.https://doi.org/10.1130/0091-7613(2002)030<0367:giosct>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0367:giosct>2.0.co;2
      Schultz, A., Dickson, P., Elderfield, H., 1996.Temporal Variations in Diffuse Hydrothermal Flow at TAG.Geophysical Research Letters, 23(23):3471-3474. https://doi.org/10.1029/96gl02081
      Sclater, J.G., Jaupart, C., Galson, D., 1980.The Heat Flow through Oceanic and Continental Crust and the Heat Loss of the Earth.Reviews of Geophysics, 18(1):269. https://doi.org/10.1029/rg018i001p00269
      Sclater, J.G., Parsons, B., Jaupart, C., 1981.Oceans and Continents:Similarities and Differences in the Mechanisms of Heat Loss.Journal of Geophysical Research, 86(B12):11535. https://doi.org/10.1029/jb086ib12p11535
      Scott, R., Hajash, A., 1975. Hydrothermal Process in the Atlantic Ocean Crust. PUBL, 119, Int, Ass. of Hidrol. Sci., Gentbrugge, Belgium.
      Scott, S.D., 1985.Seafloor Polymetallic Sulfide Deposits:Modern and Ancient.Marine Mining, 5(2):191-212. https://doi.org/10.1016/S0016-7037(03)00459-9
      Sifré, D., Gardés, E., Massuyeau, M., et al., 2014.Electrical Conductivity during Incipient Melting in the Oceanic Low-Velocity Zone.Nature, 509(7498):81-85. https://doi.org/10.1038/nature13245
      Sleep, N.H., Wolery, T.J., 1978.Egress of Hot Water from Midocean Ridge Hydrothermal Systems:Some Thermal Constraints.Journal of Geophysical Research:Solid Earth, 83(B12):5913-5922. https://doi.org/10.1029/jb083ib12p05913
      Tarasov, V.G., Gebruk, A.V., Mironov, A.N., et al., 2005.Deep-Sea and Shallow-Water Hydrothermal Vent Communities:Two Different Phenomena?Chemical Geology, 224(1/2/3):5-39. https://doi.org/10.1016/j.chemgeo.2005.07.021
      Teagle, D.A.H., Bickle, M.J., Alt, J.C., 2003.Recharge Flux to Ocean-Ridge Black Smoker Systems:A Geochemical Estimate from ODP Hole 504B.Earth and Planetary Science Letters, 210(1/2):81-89. https://doi.org/10.1016/s0012-821x(03)00126-2
      Tivey, M., 2007.Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits.Oceanography, 20(1):50-65. https://doi.org/10.5670/oceanog.2007.80
      Tsuji, T., Ken, T.K., Oiwane, H., et al., 2012.Hydrothermal Fluid Flow System around the Iheya North Knoll in the Mid-Okinawa trough Based on Seismic Reflection Data.Journal of Volcanology and Geothermal Research, 213-214:41-50. https://doi.org/10.1016/j.jvolgeores.2011.11.007
      Turcotte, D.L., Schubert, G., 2014.Geodynamics.Cambridge University Press, Cambridge, 626.
      van Dover, C.L., 2001.Biogeography and Ecological Setting of Indian Ocean Hydrothermal Vents.Science, 294(5543):818-823. https://doi.org/10.1126/science.1064574
      von Damm, K.L., Lilley, M.D., 2004.Diffuse Flow Hydrothermal Fluids from 9°50'N East Pacific Rise:Origin, Evolution and Biogeochemical Controls.The Subseafloor Biosphere at Mid-Ocean Ridges, London, 245-268. https://doi.org/10.1029/144GM16
      Wallace, M.E., Green, D.H., 1988.An Experimental Determination of Primary Carbonatite Magma Composition.Nature, 335(6188):343-346. https://doi.org/10.1038/335343a0
      Wang, J. J., 2012. Preliminary Studies on the Benthos from Deep-Sea Hydrothermal Field in Indian Ocean and East Pacific Rise (Dissertation). Third Institute of Oceanography, State Oceanic Administration, Xiamen (in Chinese with English abstract).
      Wang, Q., 2010.A Review of Water Contents and Ductile Deformation Mechanisms of Olivine:Implications for the Lithosphere-Asthenosphere Boundary of Continents.Lithos, 120(1/2):30-41. https://doi.org/10.1016/j.lithos.2010.05.010
      Withers, A.C., Hirschmann, M.M., 2008.Influence of Temperature, Composition, Silica Activity and Oxygen Fugacity on the H2O Storage Capacity of Olivine at 8 GPa.Contributions to Mineralogy and Petrology, 156(5):595-605. https://doi.org/10.1007/s00410-008-0303-3
      Withers, A.C., Hirschmann, M.M., Tenner, T.J., 2011.The Effect of Fe on Olivine H2O Storage Capacity:Consequences for H2O in the Martian Mantle.American Mineralogist, 96(7):1039-1053. https://doi.org/10.2138/am.2011.3669
      Wolfgang, B., Bernhard, P., Hart, S.R., et al., 2003.Correction to"Geochemistry of Hydrothermally Altered Oceanic Crust:DSDP/ODP Hole 504B-Implications for Seawater-Crust Exchange Budgets and Sr-and Pb-Isotopic Evolution of the Mantle".Geochemistry, Geophysics, Geosystems, 4(3):1-12. https://doi.org/10.1029/2002GC000419
      Wyllie, P.J., 1988.Magma Genesis, Plate Tectonics, and Chemical Differentiation of the Earth.Reviews of Geophysics, 26(3):370. https://doi.org/10.1029/rg026i003p00370
      Xia, Q.K., Hao, Y.T., Li, P., et al., 2010.Low Water Content of the Cenozoic Lithospheric Mantle beneath the Eastern Part of the North China Craton.Journal of Geophysical Research, 115(B7):1-22. https://doi.org/10.1029/2009jb006694
      Xie, Y., 2016.Study the Origin of Water on the Earth by the "Luo Sai Ta".Space Exploration, (1):46-49 (in Chinese).
      Yamamoto, K., Akimoto, S., 1977.The System MgO-SiO2-H2O at High Pressures and Temperatures; Stability Field for Hydroxyl-Chondrodite, Hydroxyl-Clinohumite and 10 a O-Phase.American Journal of Science, 277(3):288-312. https://doi.org/10.2475/ajs.277.3.288
      Yang, C.P., Jin Z.M., Wu, Y., 2010.Water in the Mantle Transition Zone and Its Geodynamic Implications.Earth Science Frontiers, 17(3):114-126.
      Yang, K.H., Scott, S.D., 1996.Possible Contribution of a Metal-Rich Magmatic Fluid to a Sea-Floor Hydrothermal System.Nature, 383(6599):420-423. https://doi.org/10.1038/383420a0
      Yang, X.Z., Liu, D.D., Xia, Q.K., 2014.CO2-Induced Small Water Solubility in Olivine and Implications for Properties of the Shallow Mantle.Earth and Planetary Science Letters, 403:37-47. https://doi.org/10.13039/501100001809
      Yoerger, D., Bradley, A., Jakuba, M., et al., 2007.Mid-Ocean Ridge Exploration with an Autonomous Underwater Vehicle.Oceanography, 20(4):52-61. https://doi.org/10.5670/oceanog.2007.05
      Yu, Z. H., 2000. Study of the Inclusions and the Isotopic Compositions of Volatile Components in Volcanic Rocks in the Okinawa Trough (Dissertation). Institute of Oceanology, Chinese Academy of Sciences, Qingdao(in Chinese with English abstract).
      Zekely, J., Van Dover, C.L., Nemeschkal, H.L., et al., 2006.Hydrothermal Vent Meiobenthos Associated with Mytilid Mussel Aggregations from the Mid-Atlantic Ridge and the East Pacific Rise.Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 53(8):1363-1378. https://doi.org/10.1016/j.dsr.2006.05.010
      Zeng, Z.G., 2011.Seafloor Hydrothermal Geology.Science Press, Beijing (in Chinese).
      Zhai, S.K., Chen, L.R., Wang, Z., et al., 1997.Primary Analysis on Pumice Magmatism Model of the Okinawa Trough.Marine Geology & Quaternary Geology, 17(1):59-66 (in Chinese with English abstract).
      Zhai, S.K., Chen, L.R., Zhang, H.Q., 2001.Magmatism and Seafloor Hydrothermal Activities in the Okinawa Trough.China Ocean Press, Beijing (in Chinese).
      Zhao, H.B., Xu, W.B., Ma, Y.H., 2005.Deep Space Exploration of Asteroids:The Science Objectives and Exploration Program.The First Annual Meeting of Committee of Deep Space Exploration Technology, Chinese Society of Astronautics, Beijing(in Chinese).
      Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China Earth Sciences, 46(3):253-286.https://doi.org/10.1007/s11430-015-5258-4 (in Chinese). doi: 10.1007/s11430-015-5258-4(inChinese)
      Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93
      Zhou, X.H., Zhang, H.F., Zheng, J.P., et al., 2013.Progresses of Mantle Geochemistry in China during the First Decade of the 21th Century.Bulletin of Mineralogy Petrology & Geochemistry, 26(2):163-172.
      Zhu, H.J., Bozda, E., Duffy, T.S., et al., 2013.Seismic Attenuation beneath Europe and the North Atlantic:Implications for Water in the Mantle.Earth and Planetary Science Letters, 381(4):1-11. https://doi.org/10.1016/j.epsl.2013.08.030
      Zong, T., Zhai.S.K., Yu, Z.H., 2016.Regional Differences of Magmatism in the Okinawa Trough.Earth Science, 41(6):1031-1040 (in Chinese with English abstract). https://www.researchgate.net/publication/305417408_Regional_differences_of_magmatism_in_the_Okinawa_trough
      国坤, 翟世奎, 于增慧, 等, 2016.冲绳海槽火山岩岩石系列的厘定及构造环境意义.地球科学, 41(10):1655-1664. http://www.earth-science.net/WebPage/Article.aspx?id=3369
      贾绍凤, 2015.地球上的水来自哪里?百科知识, (3):22-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=czsfd200832014
      李怀明, 翟世奎, 陶春辉, 等, 2009.板块俯冲带岩浆作用过程的研究.海洋科学进展, 27(1):98-105. http://d.old.wanfangdata.com.cn/Periodical/hbhhy200901013
      李文渊, 2010.现代海底热液成矿作用.地球科学与环境学报, 32(1):15-23. https://www.wenkuxiazai.com/doc/af3037d2c1c708a1284a445e.html
      李雨新, 1984.关于地球上水的起源与地下水的成因问题.西安地质学院学报, (2):80-87. https://www.natureasia.com/zh-cn/nature/highlights/24772
      王建佳, 2012. 印度洋与东太平洋海隆深海热液区底栖动物初探(硕士学位论文). 厦门: 国家海洋局第三海洋研究所.
      谢懿, 2016."罗塞塔"探秘地球上水的起源.太空探索, (1):46-49. http://d.wanfangdata.com.cn/Periodical_kxdgy201503031.aspx
      于增慧, 2000. 冲绳海槽火山岩中岩浆包裹体及气体同位素组成研究(博士学位论文). 青岛: 中国科学院海洋研究所.
      曾志刚, 2011.海底热液地质学.北京:科学出版社.
      翟世奎, 陈丽蓉, 王镇, 等, 1997.冲绳海槽浮岩岩浆活动模式浅析.海洋地质与第四纪地质, 17(1):59-66.
      翟世奎, 陈丽蓉, 张海启, 2001.冲绳海槽的岩浆作用与海底热液活动.北京:海洋出版社.
      赵海斌, 徐伟彪, 马月华, 2005.小行星深空探测的科学目标与探测计划.中国宇航学会深空探测技术专业委员会学术会议, 北京.
      郑永飞, 陈仁旭, 徐峥, 等, 2016.俯冲带中的水迁移.中国科学:地球科学, 46(3):253-286. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201603001.htm
      宗统, 翟世奎, 于增慧, 2016.冲绳海槽岩浆作用的区域性差异.地球科学, 41(6):1031-1040. http://www.earth-science.net/WebPage/Article.aspx?id=3314
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (5450) PDF downloads(92) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return