• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 3
    Mar.  2019
    Turn off MathJax
    Article Contents
    Li Junjie, Liu Hanbin, Zhang Jia, Jin Guishan, Zhang Jianfeng, Han Juan, Shi Xiao, 2019. Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples. Earth Science, 44(3): 727-737. doi: 10.3799/dqkx.2019.006
    Citation: Li Junjie, Liu Hanbin, Zhang Jia, Jin Guishan, Zhang Jianfeng, Han Juan, Shi Xiao, 2019. Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples. Earth Science, 44(3): 727-737. doi: 10.3799/dqkx.2019.006

    Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples

    doi: 10.3799/dqkx.2019.006
    • Received Date: 2019-01-16
    • Publish Date: 2019-03-15
    • The domestic reactors which could be utilized for the irradiation of 40Ar-39Ar dating samples are not only rare but the operation frequency is very low, which makes the period of the irradiation for samples extremely long.Besides, the optimized parameters of irradiation for different kinds of samples are short of systematic research.To solve the above-mentioned problems, primary research was done on the HFETR in the application of the irradiation of 40Ar-39Ar dating samples for the first time.Through the irradiation of certain amount of biotite standard ZBH-25, the production efficiency of 39ArK is determined, which could provide the basis for the irradiation time for samples with different ages or potassium contents.The axial neutron flux gradient of the irradiation channel, which shows approximative conic function (R2>0.99), is only 3.3%/cm.However, the radial flux gradient is much more obvious, which is as high as 7.1%/cm.The interference factors are determined through the irradiation of pure potassium salt and calcium salt.It is found that the (36Ar/37Ar)Ca factor is uniform with the value (3.52±0.11)×10-4, but the interference factors (40Ar/39Ar)K and (36Ar/37Ar)Ca are scattered at different positions of the irradiation channel.The shielding effect of cadmium for the decrease of the interference factor of (40Ar/39Ar)K is prominent at the bottom of the sample vessel but negligible at the top of the sample vessel, which may result from the difference of the neutron spectrum along the axial direction of the irradiation channel.Taking the international standard sanidine FCs as neutron flux monitor, the domestic standards biotite ZBH-25 and hornblende BSP-1 are dated.Excellent plateau age is obtained for the ZBH-25 biotite standard, indicating that the HFETR could satisfy the requirement of the sample irradiation.However, the precision and accuracy of the plateau age of the BSP-1 hornblende is somewhat worse, which maybe has something to do with the relatively old age and low ratio of the K/Ca.Precise determination of the interference factors and proloning of the irradiation time are necessary for the improvement of the age quality for such kind of sample.

       

    • loading
    • Brereton, N. R., 1970.Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method.Earth and Planetary Science Letters, 8(6):427-433. https://doi.org/10.1016/0012-821x(70)90146-9
      Clauer, N., Zwingmann, H., Liewig, N., et al., 2012.Comparative 40Ar/39Ar and K-Ar Dating of Illite-Type Clay Minerals:A Tentative Explanation for Age Identities and Differences.Earth-Science Reviews, 115(1-2):76-96. https://doi.org/10.1016/j.earscirev.2012.07.003
      Coble, M.A., Grove, M., Calvert, A.T., 2011.Calibration of Nu-Instruments Noblesse Multicollector Mass Spectrometers for Argon Isotopic Measurements Using a Newly Developed Reference Gas.Chemical Geology, 290(1-2):75-87. https://doi.org/10.1016/j.chemgeo.2011.09.003
      Dalrymple, G.B., Alexander, E.C., Lamphere, M.A., et al., 1981.Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey TRIGA Reactor.U.S.Geological Survey, Professional Papers 1176, 18.
      Dalrymple, G.B., Lanphere, M.A., 1971.40Ar/39Ar Technique of K-Ar Dating:A Comparison with the Conventional Technique.Earth and Planetary Science Letters, 12(3):300-308. https://doi.org/10.1016/0012-821x(71)90214-7
      Kellett, D., Joyce, N., 2014.Analytical Details of Single-and Multi-Collection 40Ar/39Ar Measurements for Conventional Step-Heating and Total-Fusion Age Calculation Using the Nu Noblesse at the Geological Survey of Canada.Geological Survey of Canada, Technical Note 8, 1-21.
      Koppers, A.A.P., 2002.ArArCALC-Software for 40Ar/39Ar Age Calculations.Computers & Geosciences, 28(5):605-619. https://doi.org/10.1016/s0098-3004(01)00095-4
      Mark, D.F., Barfod, D., Stuart, F.M., et al., 2009.The ARGUS Multi-Collector Noble Gas Mass Spectrometer:Performance for 40Ar/39Ar Geochronology.Geochemistry, Geophysics, Geosystems, 10, Q0AA02. https://doi.org/10.1029/2009gc002643
      Mei, S.L., Zhang, K.X., Wardlaw, B.R., 1998.A Refined Succession of Changhsingian and Griesbachian Neogondolellid Conodonts from the Meishan Section, Candidate of the Global Stratotype Section and Point of the Permian-Triassic Boundary.Palaeogeography, Palaeoclimatology, Palaeoecology, 143(4):213-226. https://doi.org/10.1016/s0031-0182(98)00112-6
      Merrihue, C., Turner, G., 1966.Potassium-Argon Dating by Activation with Fast Neutrons.Journal of Geophysical Research, 71(11):2852-2857. https://doi.org/10.1029/jz071i011p02852
      Mitchell, J.G., 1968.The Argon-40/Argon-39 Method for Potassium-Argon Age Determination.Geochimica et Cosmochimica Acta, 32(7):781-790. https://doi.org/10.1016/0016-7037(68)90012-4
      Podosek, F.A., 1971.Neutron-Activation Potassium-Argon Dating of Meteorites.Geochimica et Cosmochimica Acta, 35(2):157-173. https://doi.org/10.1016/0016-7037(71)90055-x
      Renne, P.R., Balco, G., Ludwig, K.R., et al., 2011.Response to the Comment by W.H.Schwarz et al. on "Joint Determination of 40K Decay Constants and 40Ar*/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology" by P.R.Renne et al. (2010).Geochimica et Cosmochimica Acta, 75(17): 5097-5100.https://doi.org/ 10.1016/j.gca.2011.06.021
      Renne, P.R., Knight, K.B., Nomade, S., et al., 2005.Application of Deuteron-Deuteron (D-D) Fusion Neutrons to 40Ar/39Ar Geochronology.Applied Radiation and Isotopes, 62(1):25-32. https://doi.org/10.1016/j.apradiso.2004.06.004
      Renne, P.R., Swisher, C.C., Deino, A.L., et al., 1998.Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating.Chemical Geology, 145(1-2):117-152. https://doi.org/10.1016/s0009-2541(97)00159-9
      Rutte, D., Pfänder, J.A., Koleška, M., et al., 2015.Radial Fast-Neutron Fluence Gradients during Rotating 40Ar/39Ar Sample Irradiation Recorded with Metallic Fluence Monitors and Geological Age Standards.Geochemistry, Geophysics, Geosystems, 16(1):336-345. https://doi.org/10.1002/2014gc005611
      Sang, H.Q., Wang, F., He, H.Y., et al., 2006.Intercalibration of ZBH-25 Biotite Reference Material Untilized for K-Ar and 40Ar-39Ar Age Determination.Acta Petrologica Sinica, 22(12):3059-3078 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200612022
      Scaillet, S., 2000.Numerical Error Analysis in 40Ar-39Ar Dating.Chemical Geology, 162(3-4):269-298. https://doi.org/10.1016/s0009-2541(99)00149-7
      Stacey, J.S., Sherrill, N.D., Dalrymple, G.B., et al., 1981.A Five-Collector System for the Simultaneous Measurement of Argon Isotope Ratios in a Static Mass Spectrometer.International Journal of Mass Spectrometry and Ion Physics, 39(2):167-180. https://doi.org/10.1016/0020-7381(81)80031-9
      Turner, G., 1971.Argon 40-Argon 39 Dating:The Optimization of Irradiation Parameters.Earth and Planetary Science Letters, 10(2):227-234. https://doi.org/10.1016/0012-821x(71)90010-0
      Vermeesch, P., 2015.Revised Error Propagation of 40Ar/39Ar Data, Including Covariances.Geochimica et Cosmochimica Acta, 171:325-337. https://doi.org/10.1016/j.gca.2015.09.008
      Wang, H., Xiang, Y.X., Xu, T.Z., et al., 2017.Verification of Neutron Flux Calculation Method for HFETR.Nuclear Power Engineering, 38(S1):154-156 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc2017z1037
      Wang, S.S., Hu, S, L., Sang, H.Q., et al., 1992.BSP-1 Hornblende, a 2 Ga Age Standard as Flux Monitor of 40Ar-39Ar Dating.Acta Petrologica Sinica, 8(2):103-127 (in Chinese with English abstract).
      Yang, L.K., Wang, F., He, H.Y., et al., 2009.Achievements and Limitations of 40Ar/39Ar Dating on Young Volcanic Rocks.Seismology and Geology, 31(1):174-185 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200901016
      桑海清, 王非, 贺怀宇, 等, 2006.K-Ar法地质年龄国家一级标准物质ZBH-25黑云母的研制.岩石学报, 22(12):3059-3078. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612022
      王皓, 向玉新, 徐涛忠, 等, 2017.高通量工程试验堆(HFETR)材料辐照中子注量率计算方法验证.核动力工程, 38(S1):154-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc2017z1037
      王松山, 胡世玲, 桑海清, 等, 1992.氩-氩定年法国际标准物质BSP-1角闪石的研制.岩石学报, 8(2):103-127. doi: 10.3321/j.issn:1000-0569.1992.02.001
      杨列坤, 王非, 贺怀宇, 等, 2009.年轻火山岩氩同位素体系定年技术最新进展及问题.地震地质, 31(1):174-185. doi: 10.3969/j.issn.0253-4967.2009.01.016
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (5241) PDF downloads(86) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return