• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Jin Sheng, Sheng Yue, Liang Hongda, Wei Wenbo, Ye Gaofeng, Lu Zhanwu, 2019. Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance. Earth Science, 44(6): 1773-1783. doi: 10.3799/dqkx.2019.015
    Citation: Jin Sheng, Sheng Yue, Liang Hongda, Wei Wenbo, Ye Gaofeng, Lu Zhanwu, 2019. Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance. Earth Science, 44(6): 1773-1783. doi: 10.3799/dqkx.2019.015

    Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance

    doi: 10.3799/dqkx.2019.015
    • Received Date: 2018-08-17
    • Publish Date: 2019-06-15
    • To understand the crust-mantle electrical structure and the tectonic feature of Bangong-Nujiang suture, and offer the electrical constraints to its subduction polarity, the magnetotellurics data of the Shenzha-Shuanghu magnetotelluric profile in the central Himalaya-Tibetan Plateau was carefully processed and analyzed, obtaining a reliable 2-D electrical model. The study represents that there are some different scale resistors distributed along the profile in the upper crust and the bottom depth varying from 10 to 25 km, and meanwhile there is a middle-lower conductive layer composed of some discontinuous conductivities beneath the resistive layer. With the analysis of the electric structure, the study indicates that the subduction polarity of the Bangong-Nujiang Tethyan ocean may be double-sided, and subsequently the detachment of the upper crustal resistor was occurred, and so the twice dynamics above may contribute to the formation of the conductor within the suture. Furthermore, the conductor beneath the northern Lhasa terrane may also reflect the relation among the dynamics, magmatism and mineralization.

       

    • Bahr, K., 1991. Geological Noise in Magnetotelluric Data:A Classification of Distortion Types. Physics of the Earth and Planetary Interiors, 66(1-2):24-38. https://doi.org/10.1016/0031-9201(91)90101
      Cai, J.T., Chen, X.B., 2010.Refined Techniques for Data Processing and Two-Dimensional Inversion in Magnetotelluric Ⅱ:Which Data Polarization Mode Should be Used in 2D Inversion.Chinese Journal Geophysics, 53(11):2703-2714(in Chinese with English abstract).
      Chen, J. L., Xu, J. F., Yu, H. X., et al., 2015. Late Cretaceous High-Mg# Granitoids in Southern Tibet:Implications for the Early Crustal Thickening and Tectonic Evolution of the Tibetan Plateau? Lithos, 232:12-22. https://doi.org/10.1016/j.lithos.2015.06.020
      Chen, W.W., Yang, T.S., Zhang, S.H., et al., 2012.Paleomagnetic Results from the Early Cretaceous Zenong Group Volcanic Rocks, Cuoqin, Tibet, and Their Paleogeographic Implications. Gondwana Research, 22(2):461-469. https://doi.org/10.1016/j.gr.2011.07.019
      Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered ca.113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2):449-463. https://doi.org/10.1016/j.gr.2013.06.005
      Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu(Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Science, 42(1):1-23(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.001
      Gao, R., Chen, C., Lu, Z.W., et al., 2013.New Constraints on Crustal Structure and Moho Topography in Central Tibet Revealed by SinoProbe Deep Seismic Reflection Profiling. Tectonophysics, 606:160-170. https://doi.org/10.1016/j.tecto.2013.08.006
      Groom, R.W., Bailey, R.C., 1989.Decomposition of Magnetotelluric Impedance Tensors in the Presence of Local Three-Dimensional Galvanic Distortion. Journal of Geophysical Research, 94(B2):1913-1925. doi: 10.1029/JB094iB02p01913
      Guynn, J.H., Kapp, P., Pullen, A., et al., 2006.Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet.Geology, 34(6):505-508. https://doi.org/10.1130/g22453.1
      Hao, L. L., Wang, Q., Wyman, D. A., et al., 2016. Underplating of Basaltic Magmas and Crustal Growth in a Continental Arc:Evidence from Late Mesozoic Intermediate-Felsic Intrusive Rocks in Southern Qiangtang, Central Tibet. Lithos, 245:223-242. https://doi.org/10.1016/j.lithos.2015.09.015
      Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015.A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3):247-250. https://doi.org/10.1130/g36362.1
      Jin, S., Wei, W. B., Wang, S., et al., 2010. Discussion of the Formation and Dynamic Signification of the High Conductive Layer in Tibetan Crust. Chinese Journal of Geophysics, 53(10):2376-2385(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201010011
      Jin, S., Wei, W.B., Ye, G.F., et al., 2009.The Electrical Structure of Bangong-Nujiang Suture:Results from Magnetotelluric Sounding Detection.Chinese Journal Geophysics, 52(10):2666-2675(in Chinese with English abstract).
      Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010.Qushenla Formation Volcanic Rocks in North Lhasa Block; Products of Bangong Co-Nujiang Tethy's Southward Subduction.Acta Petrologica Sinica, 26(10):3106-3116(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201010022
      Lai, W., Hu, X. M., Zhu, D. C., et al., 2017. Discovery of the Early Jurassic Gajia Mélange in the Bangong-Nujiang Suture Zone:Southward Subduction of the Bangong-Nu-jiang Ocean? International Journal of Earth Sciences, 106(4):1277-1288. https://doi.org/10.1007/s00531-016-1405-1
      Liu, M., Bai, D.H., Xiao, P.F., 2010.The Electrical Conductivity Structure of the Eastern Tibetan Plateau and Its Tectonic Implications. Seismology and Geology, 32(1):51-58(in Chinese with English abstract).
      Lu, Z. W., Gao, R., Li, H. Q., et al., 2015. Variation of Moho Depth across Bangong-Nujiang Suture in Central Tibet:Results from Deep Seismic Reflection Data.Internation-al Journal of Geosciences, 6(8):821-830. https://doi.org/10.4236/ijg.2015.68066
      Luo, M., Pang, F. C., Li, J. C., et al., 2015. Great Gangdise Northern Tibet Metallogenic Series Study of Ore Deposits. Acta Geologica Sinica, 89(4):715-730(in Chinese with English abstract).
      McNeice, G.W., Jones, A.G., 2001. Multisite, Multifrequency Tensor Decomposition of Magnetotelluric Data. Geophysics, 66(1), 158-173. doi: 10.1190/1.1444891
      Rodi, W., MacKie, R.L., 2001.Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophysics, 66(1):174-187. https://doi.org/10.1190/1.1444893
      Sui, Q. L., Wang, Q., Zhu, D. C., et al., 2013. Compositional Diversity of ca.110 Ma Magmatism in the Northern Lhasa Terrane, Tibet:Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone. Lithos, 168-169:144-159. https://doi.org/10.1016/j.lithos.2013.01.012
      Swift, C.M., 1967.A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southern United States.Massachusetts Institute of Technology, Cambridge.
      Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data.Nature, 438:78-81. https://doi.org/10.1038/nature04154
      Wei, W. B., Jin, S., Ye, G. F., et al., 2009. The Conductivity Structure and Rheology of the Lithosphere in the Southern Tibet:The Result of the Study of Ultra-Wide Band Magnetotelluric Sounding.Science in China(Series D), 39(11), 1591-1606(in Chinese).
      Wei, W.B., Unsworth, M., Jones, A., et al., 2001.Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies.Science, 292(5517), 716-718. doi: 10.1126/science.1010580
      Wessel, P., Smith, W.H.F., 1998.New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47):579. https://doi.org/10.1029/98eo00426
      Xie, C. L., Jin, S., Wei, W. B., et al., 2016. Crustal Electrical Structures and Deep Processes of the Eastern Lhasa Terrane in the South Tibetan Plateau as Revealed by Magnetotelluric Data.Tectonophysics, 675:168-180. https://doi.org/10.1016/j.tecto.2016.03.017
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeng, S. H., Hu, X. Y., Li, J. H., et al., 2015. Detection of the Deep Crustal Structure of the Qiangtang Terrane Using Magnetotelluric Imaging.Tectonophysics, 661:180-189. https://doi.org/10.1016/j.tecto.2015.08.038
      Zhang, L.T., Jin, S., Wei, W.B., et al., 2012.Electrical Structure of Crust and Upper Mantle beneath the Eastern Margin of the Tibetan Plateau and the Sichuan Basin.Chinese Journal of Geophysics, 55(12):4126-4137(in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201212025
      Zhao, W., Mechie, J., Brown, L.D., et al., 2001.Crustal Structure of Central Tibet as Derived from Project Indepth Wide-Angle Seismic Data.Geophysical Journal International, 145(2):486-498. https://doi.org/10.1046/j.0956-540x.2001.01402.x
      Zhao, Y. Y., Cui, Y. B., Lv, L. N., et al., 2011. Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet.Acta Petrologica Sinica, 27(7):2132-2142(in Chinese with English ab-stract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107020
      Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.109
      Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      蔡军涛, 陈小斌, 2010.大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择.地球物理学, 53(11):2703-2714. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201011018
      丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. https://doi.org/10.3799/dqkx.2017.001
      金胜, 魏文博, 汪硕, 等, 2010.青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据.地球物理学报, 53(10):2376-2385. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201010011
      金胜, 魏文博, 叶高峰, 等, 2009.班公-怒江构造带的电性结构特征:大地电磁探测结果.地球物理学报, 52(10):2666-2675. doi: 10.3969/j.issn.0001-5733.2009.10.027
      康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?岩石学报, 26(10):3106-3116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022
      刘美, 白登海, 肖鹏飞, 2010.青藏高原东部岩石圈电性结构特征及其构造意义.地震地质, 32(1):51-58. doi: 10.3969/j.issn.0253-4967.2010.01.005
      罗梅, 潘凤雏, 李巨初, 等, 2015.西藏大冈底斯北部金属矿床成矿系列研究.地质学报, 89(4):715-730. doi: 10.3969/j.issn.0001-5717.2015.04.005
      魏文博, 金胜, 叶高峰, 等, 2009.藏南岩石圈导电性结构与流变性——超宽频带大地电磁测深研究结果.中国科学(D辑), 39(11):1591-1606. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200911011.htm
      张乐天, 金胜, 魏文博, 等, 2012.青藏高原东缘及四川盆地的壳幔导电性结构研究.地球物理学报, 55(12):4126-4137. doi: 10.6038/j.issn.0001-5733.2012.12.025
      赵元艺, 崔玉斌, 吕立娜, 等, 2011.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义.岩石学报, 27(7):2132-2142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107020
      郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. https://doi.org/10.3799/dqkx.2017.109
    • Relative Articles

    • dqkx-44-6-1773-Fulu.pdf
    • Cited by

      Periodical cited type(6)

      1. 侯爵,潘佳铁,李永华,武振波,俞贵平,徐涛. 华北克拉通中西部地壳S波速度结构及其地质意义. 地球物理学报. 2023(05): 1960-1975 .
      2. 韩明明,陈立春,李彦宝,高帅坡,冯嘉辉. 班公湖-怒江缝合带西界边坝-洛隆断裂全新世活动的地质地貌证据. 地球科学. 2022(03): 757-765 . 本站查看
      3. LIU Hong,LI Youguo,LI Wenchang,LI Guangming,HUANG Hanxiao,MA Dongfang,HUANG Yong,ZHOU Qing,FU Jiangang. Petrogenesis of an Early Cretaceous Xiabie Co I-type Granite in Southern Qiangtang, Tibet: Evidence from Geochemistry, Geochronology, Rb-Sr, Sm-Nd, Lu-Hf and Pb isotopes. Acta Geologica Sinica(English Edition). 2022(03): 919-937 .
      4. 薛帅,卢占武,梁宏达,李文辉,王海燕. 班公湖—怒江缝合带中段深部电性结构及其构造意义. 地球学报. 2022(06): 925-935 .
      5. 牛潇,郑洪伟,贺日政,李娱兰,严江勇,李宗旭. 青藏高原中部INDEPTH-Ⅲ剖面低速层研究. 地球学报. 2021(01): 74-84 .
      6. 云龙,张进,徐伟,刘志成,张竞嘉,赵衡,张北航. 河西走廊西段花海断裂几何学、运动学及区域构造意义. 地球科学. 2021(01): 259-271 . 本站查看

      Other cited types(3)

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (5282) PDF downloads(61) Cited by(9)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return