• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 3
    Mar.  2019
    Turn off MathJax
    Article Contents
    Cai Hua, Qin Lanzhi, Liu Yinghui, 2019. Differentiation and Coupling Model of Source-to-Sink Systems with Transitional Facies in Pingbei Slope of Xihu Sag. Earth Science, 44(3): 880-897. doi: 10.3799/dqkx.2019.025
    Citation: Cai Hua, Qin Lanzhi, Liu Yinghui, 2019. Differentiation and Coupling Model of Source-to-Sink Systems with Transitional Facies in Pingbei Slope of Xihu Sag. Earth Science, 44(3): 880-897. doi: 10.3799/dqkx.2019.025

    Differentiation and Coupling Model of Source-to-Sink Systems with Transitional Facies in Pingbei Slope of Xihu Sag

    doi: 10.3799/dqkx.2019.025
    • Received Date: 2019-02-21
    • Publish Date: 2019-03-15
    • In order to promote the exploration process of lithologic hydrocarbon reservoir in Pingbei slope of Xihu Sag and to clarify the development mode and distribution law of lithologic sand body, a comprehensive study is presented in this paper, based on the analyses of the latest drilling, thin sections, heavy minerals and high-resolution 3D seismic data of Pingbei slope in the Xihu Sag, East China Sea.The analyses of heavy mineral composition and debris show the components, orientation, and supply strength of the provenance.In addition, the analyses of logging and cores, the seismic facies and multi-attribute reveal the tidal transformation mechanism in the distribution and evolution of sediments.On the basis of quantitative and semi-quantitative analysis of various elements of Source-to-Sink (S2S) systems correlation combined with the paleogeomorphology and faults, the coupling differences of S2S systems under the control of provenance supply and tidal action are clarified.The results show that low provenance supply-single stage fault-tidal control, intermediate provenance supply-paleo-uplift and reverse step faults-river-tidal control, and high provenance supply-consequent step faults-river-tidal control coupling models are established.On this basis, the sedimentary distribution cause and law of each S2S system are systematically discussed.The establishment of different coupling models of S2S systems can provide the key directions of petroleum exploration.In addition, this study also provides reference methods and ideas for the research of S2S systems under different geological backgrounds.

       

    • loading
    • Allen, P., 2005.Striking a Chord.Nature, 434(7036):961. https://doi.org/10.1038/434961a
      Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(7176):274-276. https://doi.org/10.1038/nature06586
      Allen, P.A., Hovius, N., 1998.Sediment Supply from Landslide-Dominated Catchments:Implications for Basin-Margin Fans.Basin Research, 10(1):19-35. https://doi.org/10.1046/j.1365-2117.1998.00060.x
      Cai, H., Zhang, J.P., 2013.Characteristics of Faults on the Pinghu Slope of Xihu Sag, the East China Sea Shelf Basin and Their Sealing Capacity.Marine Geology Frontiers, 29(4):20-26 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hydzdt201304004
      Cai, H., Zhang, J.P., Tang, X.J., 2014.Characteristics of the Fault Systems and Their Control on Hydrocarbon Accumulation in the Xihu Sag, East China Sea Shelf Basin.Nature Gas Industry, 34(10):18-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201410004.htm
      Duan, D.P., Cai, H., Ruan, J.X., et al., 2015.Study about the Sedimentary Microfacies of PH Fm.in X Oilfield-Taking FHT Area as an Example.Offshore Oil, 35(1):42-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYSY201501011.htm
      Gao, W.Z., Tian, C., Zhao, H., et al., 2015.Discussion on the Hydrocarbon Exploration Potential of Non-Structural Reservoir of the Pinghu Slope in Xihu Sag.Offshore Oil, 35(1):22-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy201501004
      Hu, W.S., Cai, F., Hu, F., et al., 2010.The Characteristics of Tectonic Transform Evolutional Rules of Chasmic Cycles in Pinghu Slope of Xihu Depression of East China Sea.Journal of Oil and Gas Technology, 32(3):7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201003004.htm
      Li, S.L., Xu, L., Yu, X.H., et al., 2018.Marine Transgressions and Characteristics of Tide-Dominated Sedimentary Systems in the Oligocene, Xihu Sag, East China Sea Shelf Basin.Journal of Palaeogeography, 20(6):1023-1032 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201806009
      Liu, Q.H., Zhu, H.T., Shu, Y., et al., 2015.Provenance Systems and Their Control on the Beach-Bar of Paleogene Enping Formation, Enping Sag, Pearl River Mouth Basin.Acta Petrolei Sinica, 36(3):286-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201503005.htm
      Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2016.Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift.Earth Science, 41(11):1935-1949 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.134
      Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2017.Source-to-Sink System of the Steep Slope Fault in the Western Shaleitian Uplift.Earth Science, 42(11):1883-1896 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.119
      Lu, J.Z., Ye, J.R., Huang, S.B., et al., 2009.Characteristics and Hydrocarbon Generation-Expulsion Histories of Source Rocks of Pingbei Area in Xihu Depression.Offshore Oil, 29(4):38-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy200904006
      Qin, L.Z., Liu, J.S., Li, S., et al., 2017.Characteristics of Zircon in the Huagang Formation of the Central Inversion Zone of Xihu Sag and Its Provenance Indication.Petroleum Geology & Experiment, 39(4):498-504, 526 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201704010.htm
      Ren, J.Y., Hu, X.Y., Zhang, J.X., 1998.The Late Mesozoic Tectonic Activation in the Eastern Chinese Continent and Its Evolution Progress.Geotectonica et Metallogenia, 22(2):89-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK199802000.htm
      Sømme, T.O., Helland-Hansen, W., Martinsen, O.J., et al., 2009.Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems:A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems.Basin Research, 21(4):361-387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
      Sømme, T.O., Jackson, C.A.L., 2013.Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 2-Sediment Dispersal and Forcing Mechanisms.Basin Research, 25(5):512-531. https://doi.org/10.1111/bre.12014
      Sømme, T.O., Jackson, C.A.L., Vaksdal, M., 2013.Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 1-Depositional Setting and Fan Evolution.Basin Research, 25(5):489-511. https://doi.org/10.1111/bre.12013
      Wei, X.S., Zhu, H.T., Xu, C.G., et al., 2017.Pinchout Point Prediction of Thin Inter-Beds Based on Forward Modeling Method:An Example from BZ12 Block of Bozhong Sag, Bohai Bay Basin.Geological Science and Technology Information, 36(2):265-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201702035.htm
      Wu, F.D., Lu, Y.C., Ruan, X.Y., et al., 1996.Application of Heavy Minerals Cluster Analysis to Study of Clastic Sources and Stratigraphic Correlation.Geoscience, 10(3):397-403 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ603.014.htm
      Wu, J.P., Zhang, L., Wan, L.F., et al., 2017.Provenance Analysis of Pinghu Formation in Xihu Sag.China Petroleum Exploration, 22(2):50-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201702006.htm
      Yang, C.H., Gao, Z.H., Jiang, Y.M., et al., 2013.Reunderstanding of Clastic Rock Sedimentary Facies of Eocene Pinghu Formation in Pinghu Slope of Xihu Sag.Journal of Oil and Gas Technology, 35(9):11-14 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e2078f9cacbe00d985d48541f19744c4&encoded=0&v=paper_preview&mkt=zh-cn
      Yu, X.H., Li, S.L., Cao, B., et al., 2017.Oligocene Sequence Framework and Depositional Response in the Xihu Depression, East China Sea Shelf Basin.Acta Sedimentologica Sinica, 35(2):299-314 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201702009
      Yuan, W., Xu, X.H., Zhou, X.J., 2014.The New Geochronology Results of the Pinghu Formation in Xihu Depression:Evidence from the SHRIMP Zircon U-Pb Ages of the Volcanic Rocks.Geological Journal of China Universities, 20(3):407-414 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=66b4a04eb06bad50f6258f5be578906b&encoded=0&v=paper_preview&mkt=zh-cn
      Zeng, H.L., Zhao, W.Z., Xu, Z.H., et al., 2018.Carbonate Seismic Sedimentology:A Case Study of Cambrian Longwangmiao Formation, Gaoshiti-Moxi Area, Sichuan Basin, China.Petroleum Exploration and Development, 45(5):775-784 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201805003
      Zhang, J.P., Xu, F., Zhong, T., et al., 2012.Sequence Stratigraphy Models and Sedimentary Evolution of Pinghu and Huagang Formations in Xihu Trough.Marine Geology & Quaternary Geology, 32(1):35-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201201009.htm
      Zhang, J.P., Yu, Y.F., Zhang, T., et al., 2013.A Discussion on the Exploration Potential of Deep Basin Gas in Xihu Sag, East China Sea.China Offshore Oil and Gas, 25(2):24-29, 35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201302003.htm
      Zhang, S.L., Zhang, J.P., Tang, X.J., et al., 2014.Geometry Characteristics of the Fault System in Xihu Sag in East China Sea and Its Formation Mechanism.Marine Geology & Quaternary Geology, 34(1):87-94 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201401014.htm
      Zhou, X.H., Yu, Y.X., Tang, L.J., et al., 2010.Cenozoic Offshore Basin Architecture and Division of Structural Elements in Bohai Sea.China Offshore Oil and Gas, 22(5):285-289 (in Chinese with English abstract).
      Zhu, H.T., Liu, K.Y., Du, Y.S., et al., 2009.Quantitative Simulation and New Consideration on the Transformation System of the Accommodation Space.Earth Science, 34(5):819-828 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200905014
      Zhu, H.T., Li, M., Liu, K.Y., et al., 2010.Sequence Stratigraphic Architectures of Intra-Cratonic Basin and Its Controlling Factors.Earth Science, 35(6):1035-1040 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.117
      Zhu, H.T., Li, S., Liu, H.R., et al., 2016.The Type and Implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin:An Example from the Paleogene Wenchang Formation of Zhu I Depression, Pearl River Mouth Basin.Earth Science, 41(3):361-372 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.028
      Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018.Varieties of Sequence Stratigraphic Configurations in Continential Basins.Earth Science, 43(3):770-785 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.906
      Zhu, H.T., Liu.Y.M., Liu, K.Y., et al., 2013.Source-Ward Retro-Gradational Stacking Patterns of Sequence Stratigraphic Architectures of Intra-Cratonic Basin:One Example from Shanxi Formation of Ordos Basin, China.Earth Science, 38(4):776-782 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.075
      Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017.Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin.Earth Science, 42(11):1851-1870 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.117
      蔡华, 张建培, 2013.东海西湖凹陷平湖斜坡带断层特征及其封闭性.海洋地质前沿, 29(4):20-26. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201304004
      蔡华, 张建培, 唐贤君, 2014.西湖凹陷断裂系统特征及其控藏机制.天然气工业, 34(10):18-26. doi: 10.3787/j.issn.1000-0976.2014.10.003
      段冬平, 蔡华, 阮建新, 等, 2015.X油气田PH组沉积微相精细研究——以FHT地区为例.海洋石油, 35(1):42-46. doi: 10.3969/j.issn.1008-2336.2015.01.042
      高伟中, 田超, 赵洪, 等, 2015.西湖凹陷平湖斜坡带非构造油气藏勘探潜力探讨.海洋石油, 35(1):22-26. doi: 10.3969/j.issn.1008-2336.2015.01.022
      胡望水, 蔡峰, 胡芳, 等, 2010.东海西湖凹陷平湖斜坡带裂陷期变换构造特征及其演化规律.石油天然气学报, 32(3):7-12. doi: 10.3969/j.issn.1000-9752.2010.03.002
      李顺利, 许磊, 于兴河, 等, 2018.东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征.古地理学报, 20(6):1023-1032. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201806009
      刘强虎, 朱红涛, 舒誉, 等, 2015.珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制.石油学报, 36(3):286-299. http://d.old.wanfangdata.com.cn/Periodical/syxb201503004
      刘强虎, 朱筱敏, 李顺利, 等, 2016.沙垒田凸起前古近系基岩分布及源-汇过程.地球科学, 41(11):1935-1949. https://doi.org/10.3799/dqkx.2016.134
      刘强虎, 朱筱敏, 李顺利, 等, 2017.沙垒田凸起西部断裂陡坡型源-汇系统.地球科学, 42(11):1883-1896. https://doi.org/10.3799/dqkx.2017.119
      陆俊泽, 叶加仁, 黄胜兵, 等, 2009.西湖凹陷平北地区烃源岩特征及生排烃史.海洋石油, 29(4):38-43. doi: 10.3969/j.issn.1008-2336.2009.04.038
      秦兰芝, 刘金水, 李帅, 等, 2017.东海西湖凹陷中央反转带花港组锆石特征及物源指示意义.石油实验地质, 39(4):498-504, 526. http://d.old.wanfangdata.com.cn/Periodical/sysydz201704010
      任建业, 胡祥云, 张俊霞, 1998.中国大陆东部晚中生代构造活动及其演化过程.大地构造与成矿学, 22(2):89-96. http://cdmd.cnki.com.cn/Article/CDMD-82501-1013233489.htm
      魏小松, 朱红涛, 徐长贵, 等, 2017.基于正演模拟技术的薄互层岩性体尖灭点解释外推:以渤中凹陷12构造区为例.地质科技情报, 36(2):265-271. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702035.htm
      武法东, 陆永潮, 阮小燕, 等, 1996.重矿物聚类分析在物源分析及地层对比中的应用.现代地质, 10(3):397-403. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ603.014.htm
      吴嘉鹏, 张兰, 万丽芬, 等, 2017.西湖凹陷平湖组物源分析.中国石油勘探, 22(2):50-57. doi: 10.3969/j.issn.1672-7703.2017.02.006
      杨彩虹, 高兆红, 蒋一鸣, 等, 2013.西湖凹陷平湖斜坡带始新统平湖组碎屑沉积体系再认识.石油天然气学报, 35(9):11-14. doi: 10.3969/j.issn.1000-9752.2013.09.003
      于兴河, 李顺利, 曹冰, 等, 2017.西湖凹陷渐新世层序地层格架与沉积充填响应.沉积学报, 35(2):299-314. http://d.old.wanfangdata.com.cn/Periodical/cjxb201702009
      袁伟, 徐旭辉, 周小进, 2014.西湖凹陷平湖组时代新认识:来自火山岩SHRIMP锆石U-Pb年龄的证据.高校地质学报, 20(3):407-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201403006.htm
      曾洪流, 赵文智, 徐兆辉, 等, 2018.地震沉积学在碳酸盐岩中的应用——以四川盆地高石梯-磨溪地区寒武系龙王庙组为例.石油勘探与开发, 45(5):775-784. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201805004.htm
      张建培, 徐发, 钟韬, 等, 2012.东海陆架盆地西湖凹陷平湖组-花港组层序地层模式及沉积演化.海洋地质与第四纪地质, 32(1):35-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201201006
      张建培, 余逸凡, 张田, 等, 2013.东海西湖凹陷深盆气勘探前景探讨.中国海上油气, 25(2):24-29, 35. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201302005
      张绍亮, 张建培, 唐贤君, 等, 2014.东海西湖凹陷断裂系统几何学特征及其成因机制.海洋地质与第四纪地质, 34(1):87-94. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201401014.htm
      周心怀, 余一欣, 汤良杰, 等, 2010.渤海海域新生代盆地结构与构造单元划分.中国海上油气, 22(5):285-289. doi: 10.3969/j.issn.1673-1506.2010.05.001
      朱红涛, Liu, K.Y., 杜远生, 等, 2009.可容纳空间转换系统的定量模拟.地球科学, 34(5):819-828. doi: 10.3321/j.issn:1000-2383.2009.05.014
      朱红涛, 李敏, 刘可禹, 等, 2010.陆内克拉通盆地层序地层构型及其控制因素.地球科学, 35(6):1035-1040. https://doi.org/10.3799/dqkx.2010.117
      朱红涛, 李森, 刘浩冉, 等, 2016.陆相断陷湖盆迁移型层序构型及意义:以珠Ⅰ坳陷古近系文昌组为例.地球科学, 41(3):361-372. https://doi.org/10.3799/dqkx.2016.028
      朱红涛, 刘可禹, 朱筱敏, 等, 2018.陆相盆地层序构型多元化体系.地球科学, 43(3):770-785. https://doi.org/10.3799/dqkx.2018.906
      朱红涛, 刘依梦, 刘可禹, 等, 2013.陆内克拉通盆地"溯源退积"层序构型构建:以鄂尔多斯盆地山西组为例.地球科学, 38(4):776-782. https://doi.org/10.3799/dqkx.2013.075
      朱红涛, 徐长贵, 朱筱敏, 等, 2017.陆相盆地源-汇系统要素耦合研究进展.地球科学, 42(11):1851-1870. https://doi.org/10.3799/dqkx.2017.117
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (4446) PDF downloads(57) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return