• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 3
    Mar.  2020
    Turn off MathJax
    Article Contents
    Zhou Bo, Dong Yunpeng, Yang Zhao, Genser Johann, Liu Xiaoming, 2020. Laser Fusion 40Ar-39Ar Dating Method Using Multi-Collector Noble Gas Mass Spectrometer Argus Ⅵ and Its Geological Application. Earth Science, 45(3): 804-814. doi: 10.3799/dqkx.2019.029
    Citation: Zhou Bo, Dong Yunpeng, Yang Zhao, Genser Johann, Liu Xiaoming, 2020. Laser Fusion 40Ar-39Ar Dating Method Using Multi-Collector Noble Gas Mass Spectrometer Argus Ⅵ and Its Geological Application. Earth Science, 45(3): 804-814. doi: 10.3799/dqkx.2019.029

    Laser Fusion 40Ar-39Ar Dating Method Using Multi-Collector Noble Gas Mass Spectrometer Argus Ⅵ and Its Geological Application

    doi: 10.3799/dqkx.2019.029
    • Received Date: 2019-01-04
    • Publish Date: 2020-03-15
    • The single-collector noble gas mass spectrometer has constrained the further development of the high-precision 40Ar-39Ar dating, owing to its relatively low efficiency and precision of measurement. However, the multi-collector noble gas mass spectrometer has been increasingly widely applied in the high-precision 40Ar-39Ar dating in recent years, showing great advantage and potentiality. The method of 40Ar-39Ar dating by laser total fusion/stepwise heating using the multi-collector noble gas mass spectrometer Argus Ⅵ is reported briefly, and the measurements of air, standard mineral FCs and YBCs, and the K-feldspar from the Kaimuqi granitic pluton in the East Kunlun were performed. Concordant atmospheric 40Ar/36Ar ratio and the corresponding mass discrimination factor (MDF) were obtained from 326 air argon analyses during four successive months, indicative of the stability of the machine system. The "model ages" calculated from the laser fusion 40Ar-39Ar results of FCs and YBCs suggest that, the level of precision achievable using the Argus Ⅵ for single-grain or minor sample analysis is significantly high and is better than 1‰ (excluding the errors associated with the age of monitors and decay constants). J value and F value (40Ar*/39ArK) calculated from the total fusion results of the FCs show similar trend with those from ARGONAUT lab at the University of Salzburg, both suggesting a distinct gradient of the neutron flux of the LVR-15 reactor. The intercalibration factor between YBCs and FCs based on our total fusion analysis of YCs are calculated as: RFCsYBCs=1.045 304±0.000 752 (1σ), and the single-grain total fusion age of 29.280±0.086 (1σ) for YBCs is obtained as well. The results are in good agreement with those of previous studies within the range of uncertainty. Stepwise heating analyses of the K-feldspar from the Kaimuqi granitic pluton in the East Kunlun yield a plateau age of 229.9±0.2 Ma (1σ, MSWD=1.59), and an inverse isochron age of 229.8±0.4 Ma, MSWD=1.71). In combination with published geochronology data of zircon U-Pb, and biotite and K-feldspar 40Ar-39Ar in this area, it is suggested that the 40Ar-39Ar age of the K-feldspar from the Kaimuqi granitic pluton represents a rapid cooling-exhumation event in the East Kunlun during Late Triassic.

       

    • loading
    • Bai, X. J., Qiu, H. N., Liu, W. G., et al., 2018. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS Ⅵ Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. Journal of Earth Science, 29(2): 408-415. https://doi.org/10.1007/s12583-017-0948-9
      Bi, L.S., Liang, X., Wang, G.H., et al., 2018. Metamorphism-Deformation Phases and Ar-Ar Chronological Constraints of the Lancang Group in the Middle and Southern Sections of the Lancangjiang Tectonic Belt, Western Yunnan. Earth Science, 43(9): 3252-3266 (in Chinese with English abstract).
      Chen, J., Xie, Z.Y., Li, B., et al., 2013. Geological and Gechemical Characteristics of the Ore-Bearing Intrusions from the Lalingzaohuo Mo Polymetallic Deposit and Its Metallogenic Significance. Geology and Exploration, 49(5):813-824 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201305002
      Dong, H. W., Meng, Y. K., Xu, Z. Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3): 535-548. https://doi.org/10.1007/s12583-019-1223-z
      Dong, Y. P., Genser, J., Neubauer, F., et al., 2011. U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China. Gondwana Research, 19(4): 881-893. https://doi.org/10.1016/j.gr.2010.09.007
      Hall, C. M., 2014. Direct Measurement of Recoil Effects on 40Ar/39Ar Standards. Geological Society, London, Special Publications, 378(1): 53-62. https://doi.org/10.1144/sp378.7
      Handler, R., Neubauer, F., Velichkova, S.H., et al., 2004. 40Ar/39Ar Age Constraints on the Timing of Magmatism and Postmagmatic Cooling in the Panagyurishte Region, Bulgaria. Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 119-132. http://www.researchgate.net/publication/233702750_40Ar39Ar_age_constraints_on_the_timing_of_magmatism_and_post-magmatic_cooling_in_the_Panagyurishte_region_Bulgaria
      Hicks, A., Barclay, J., Mark, D. F., et al., 2012. Tristan da Cunha: Constraining Eruptive Behavior Using the 40Ar/39Ar Dating Technique. Geology, 40(8): 723-726. https://doi.org/10.1130/g33059.1
      Hodges, K. V., 2005.40Ar/39Ar Thermochronology of Detrital Minerals. Reviews in Mineralogy and Geochemistry, 58(1): 239-257. https://doi.org/10.2138/rmg.2005.58.9
      Hu, R. G., Bai, X. J., Wijbrans, J., et al., 2018. Occurrence of Excess 40Ar in Amphibole: Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in Vacuo Crushing. Journal of Earth Science, 29(2): 416-426. https://doi.org/10.1007/s12583-017-0947-x
      Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369-379. https://doi.org/10.1016/j.gca.2012.01.044
      Jicha, B. R., Singer, B. S., Sobol, P., 2016. Re-Evaluation of the Ages of 40Ar/39Ar Sanidine Standards and Supereruptions in the Western U.S. Using a Noblesse Multi-Collector Mass Spectrometer. Chemical Geology, 431: 54-66. https://doi.org/10.1016/j.chemgeo.2016.03.024
      Jourdan, F., Mark, D. F., Verati, C., 2014. Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences-Introduction. Geological Society, London, Special Publications, 378(1): 1-8. https://doi.org/10.1144/sp378.24
      Jourdan, F., Renne, P. R., 2007. Age Calibration of the Fish Canyon Sanidine 40Ar/39Ar Dating Standard Using Primary K-Ar Standards. Geochimica et Cosmochimica Acta, 71(2): 387-402. https://doi.org/10.1016/j.gca.2006.09.002
      Jourdan, F., Verati, C., Féraud, G., 2006. Intercalibration of the Hb3gr 40Ar/39Ar Dating Standard. Chemical Geology, 231(3): 177-189. https://doi.org/10.1016/j.chemgeo.2006.01.027
      Koppers, A. A. P., 2002. ArArCALC: Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/s0098-3004(01)00095-4
      Krummen, M., Burgess, D.G., Wapelhorst, E., et al., 2009. Argon Isotope Ratio Measurements Using Different Detector Strategies. Geochimica et Cosmochimica Acta, 73(13): A700. http://www.researchgate.net/publication/252490149_Argon_isotope_ratio_measurements_using_different_detector_strategies
      Kuiper, K. F., Deino, A., Hilgen, F. J., et al., 2008. Synchronizing Rock Clocks of Earth History. Science, 320(5875): 500-504. https://doi.org/10.1126/science.1154339
      Lovera, O. M., Richter, F. M., Harrison, T. M., 1989. The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes. Journal of Geophysical Research, 94(B12): 17917-17935. https://doi.org/10.1029/jb094ib12p17917
      Lovera, O. M., Richter, F. M., Harrison, T. M., 1991. Diffusion Domains Determined by 39Ar Released during Step Heating. Journal of Geophysical Research, 96(B2): 2057. https://doi.org/10.1029/90jb02217
      Mark, D. F., Barfod, D., Stuart, F. M., et al., 2009. The ARGUS Multicollector Noble Gas Mass Spectrometer: Performance for 40Ar/39Ar Geochronology. Geochemistry, Geophysics, Geosystems, 10(10): Q0AA02. https://doi.org/10.1029/2009gc002643
      Mock, C., Arnaud, N. O., Cantagrel, J. M., 1999. An Early Unroofing in Northeastern Tibet? Constraints from 40Ar/39Ar Thermochronology on Granitoids from the Eastern Kunlun Range (Qianghai, NW China). Earth and Planetary Science Letters, 171(1): 107-122. https://doi.org/10.1016/s0012-821x(99)00133-8
      Phillips, D., Matchan, E. L., 2013. Ultra-High Precision 40Ar/39Ar Ages for Fish Canyon Tuff and Alder Creek Rhyolite Sanidine: New Dating Standards Required? Geochimica et Cosmochimica Acta, 121: 229-239. https://doi.org/10.1016/j.gca.2013.07.003
      Phillips, D., Matchan, E. L., Honda, M., et al., 2017. Astronomical Calibration of 40Ar/39Ar Reference Minerals Using High-Precision, Multi-Collector (ARGUSVI) Mass Spectrometry. Geochimica et Cosmochimica Acta, 196: 351-369. https://doi.org/10.1016/j.gca.2016.09.027
      Qiu, H.N., Bai, X.J., 2019. 40Ar/39Ar Dating Technique of Fluid Inclusions and Its Application. Earth Science, 44(3):685-697 (in Chinese with English abstract).
      Qiu, H.N., Bai, X.J., Liu, W.G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector ArgusVI MS with Home-Made Apparatus. Geochimia, 44(5): 477-484 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201505007
      Renne, P. R., Balco, G., Ludwig, K. R., et al., 2011. Response to the Comment by W.H. Schwarz et al. on "Joint Determination of 40K Decay Constants and 40Ar /40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology" by P.R. Renne et al. 2010. Geochimica et Cosmochimica Acta, 75(17): 5097-5100. https://doi.org/10.1016/j.gca.2011.06.021
      Renne, P. R., Mundil, R., Balco, G., et al., 2010. Joint Determination of 40K Decay Constants and 40Ar /40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology. Geochimica et Cosmochimica Acta, 74(18): 5349-5367. https://doi.org/10.1016/j.gca.2010.06.017
      Renne, P. R., Sharp, W. D., Deino, A. L., et al., 1997. 40Ar/39Ar Dating into the Historical Realm: Calibration against Pliny the Younger. Science, 277(5330): 1279-1280. https://doi.org/10.1126/science.277.5330.1279
      Renne, P. R., Swisher, C.C., Deino, A.L., et al., 1998. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chemical Geology, 145(1-2):117-152. https://doi.org/10.1016/s0009-2541(97)00159-9
      Rieser, A. B., Liu, Y., Genser, J., et al., 2006. 40Ar/39Ar Ages of Detrital White Mica Constrain the Cenozoic Development of the Intracontinental Qaidam Basin, China. Geological Society of America Bulletin, 118(11-12): 1522-1534. https://doi.org/10.1130/b25962.1
      Spell, T. L., McDougall, I., 2003. Characterization and Calibration of 40Ar/39Ar Dating Standards. Chemical Geology, 198(3-4): 189-211. https://doi.org/10.1016/s0009-2541(03)00005-6
      Steiger, R. H., Jäger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821x(77)90060-7
      Verati, C., Jourdan, F., 2014. Modelling Effect of Sericitization of Plagioclase on the 40K/40Ar and 40Ar/39Ar Chronometers: Implication for Dating Basaltic Rocks and Mineral Deposits. Geological Society, London, Special Publications, 378(1): 155-174. https://doi.org/10.1144/sp378.14
      Wang, B.Z., Chen, J., Luo, Z.H., et al., 2014.Spatial and Temporal Distribution of Late Permian-Early Jurassic Intrusion Assemblages in Eastern Qimantag, East Kunlun, and Their Tectonic Settings. Acta Petrologica Sinica, 30(11):3213-3228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009
      Wang, F., Feng, H. L., Shi, W. B., et al., 2016. Relief History and Denudation Evolution of the Northern Tibet Margin: Constraints from 40Ar/39Ar and (U-Th)/He Dating and Implications for Far-Field Effect of Rising Plateau. Tectonophysics, 675: 196-208. https://doi.org/10.1016/j.tecto.2016.03.001
      Wang, F., Jourdan, F., Lo, C. H., et al., 2014a. YBCs Sanidine: A New Standard for 40Ar/39Ar Dating. Chemical Geology, 388: 87-97. https://doi.org/10.1016/j.chemgeo.2014.09.003
      Wang, F., Zhu, R. X., Hou, Q. L., et al., 2014b. 40Ar/39Ar Thermochronology on Central China Orogen: Cooling, Uplift and Implications for Orogeny Dynamics. Geological Society, London, Special Publications, 378(1): 189-206. https://doi.org/10.1144/sp378.3
      Wang, F., Shi, W.B., Zhu, R.X., 2014.Problems of Modern 40Ar/39Ar Geochronology: Reviews. Acta Petrologica Sinica, 30(2): 326-340 (in Chinese with English abstract).
      Wang, L. Z., Wang, L. Y., Peng, P. G., et al., 2018. A Thermal Event in the Ordos Basin: Insights from Illite 40Ar/39Ar Dating with Regression Analysis. Journal of Earth Science, 29(3): 629-638. https://doi.org/10.1007/s12583-017-0903-7
      毕丽莎, 梁晓, 王根厚, 等, 2018.滇西澜沧江构造带中-南段澜沧群变质变形期次及Ar-Ar年代学约束.地球科学, 43(9): 3252-3266. doi: 10.3799/dqkx.2018.999
      陈静, 谢智勇, 李彬, 等, 2013.东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义.地质与勘探, 49(5):813-824. http://d.old.wanfangdata.com.cn/Periodical/dzykt201305002
      邱华宁, 白秀娟, 2019.流体包裹体40Ar/39Ar定年技术与应用.地球科学, 44(3):685-697. doi: 10.3799/dqkx.2019.007
      邱华宁, 白秀娟, 刘文贵, 等, 2015.自动化40Ar/39Ar定年设备研制.地球化学, 44(5): 477-484. doi: 10.3969/j.issn.0379-1726.2015.05.007
      王秉璋, 陈静, 罗照华, 等, 2014.东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论.岩石学报, 30(11):3213-3228. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009
      王非, 师文贝, 朱日祥, 2014. 40Ar/39Ar年代学中几个重要问题的讨论.岩石学报, 30(2): 326-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201402002
    • 周波附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (4032) PDF downloads(70) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return