• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Sheng Yue, Jin Sheng, Liang Hongda, Wei Wenbo, Ye Gaofeng, Lu Zhanwu, 2019. Electrical Structure of Narusongduo Ore Concentration District and Its Constraints on Mineralization. Earth Science, 44(6): 2106-2116. doi: 10.3799/dqkx.2019.030
    Citation: Sheng Yue, Jin Sheng, Liang Hongda, Wei Wenbo, Ye Gaofeng, Lu Zhanwu, 2019. Electrical Structure of Narusongduo Ore Concentration District and Its Constraints on Mineralization. Earth Science, 44(6): 2106-2116. doi: 10.3799/dqkx.2019.030

    Electrical Structure of Narusongduo Ore Concentration District and Its Constraints on Mineralization

    doi: 10.3799/dqkx.2019.030
    • Received Date: 2018-08-14
    • Publish Date: 2019-06-15
    • To understand the electrical structure in Narusongduo ore concentration district in the Tibetan Plateau and its constraints on mineralization, the magnetotellurics data in the district were carefully processed and analyzed, obtaining a reliable 2-D electrical model. The study shows that there are some conductors at depths of about 40-50 km, 20-30 km and 10 km, which may be resulted from the partial melting and aqueous fluids. As the deposits in the district belong to the magmatic-hydrothermal type, and the upwelling deep-seated magma played an important role in the mineralization, the crustal conductors may offer constraints to the ore-related magma reservoirs, and connecting these conductors also may represent the ancient ascending channels. The electrical structure indicates the relationship between the crustal conductors and the regional metallogenic dynamics in our study. The ascending ore-bearing magma also may migrate to the Pb-Zn and Fe-Cu locations by the local hidden structures, and subsequently evolved into the ore body.

       

    • loading
    • Bahr, K., 1991. Geological Noise in Magnetotelluric Data:A Classification of Distortion Types. Physics of the Earth and Planetary Interiors, 66(1-2):24-38. https://doi.org/10.1016/0031-9201(91)90101-m
      Chave, A.D., Jones, A.G., MacKie, R., et al., 2012.The Mag-netotelluric Method:Theory and Practice. Cambridge University Press, Cambridge.
      Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks.Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      Groom, R.W., Bailey, R.C., 1989.Decomposition of Magneto-telluric Impedance Tensors in the Presence of Local Three-Dimensional Galvanic Distortion.Journal of Geo-physical Research, 94(B2):1913-1925. doi: 10.1029/JB094iB02p01913
      Guo, X.Y., Li, W.H., Gao, R., et al., 2017.Nonuniform Sub-duction of the Indian Crust beneath the Himalayas.Scien-tific Reports, 7(1):12497. https://doi.org/10.1038/s41598-017-12908-0
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Jin, S., 2009. The Characteristic of Crust-Mantle Electrical Structure and Dynamics within Tibetan Plateau (Disser-tation).China University of Geosciences, Beijing, 67-80(in Chinese with English abstract).
      Ledo, J., 2005.2-D versus 3-D Magnetotelluric Data Interpre-tation. Surveys in Geophysics, 26(5):511-543. https://doi.org/10.1007/s10712-005-1757-8
      Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China.Earth Sci-ence, 43(8):2684-2700(in Chinese with English abstract).
      Liang, H. D., Jin, S., Wei, W. B., et al., 2018. Lithospheric Electrical Structure of the Middle Lhasa Terrane in the South Tibetan Plateau. Tectonophysics, 731-732:95-103. https://doi.org/10.1016/j.tecto.2018.01.020
      Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3):281-290(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001
      Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volca-nic Succession in Southern Tibet.Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chem-geo.2008.02.003
      Pan, G.T., Ding, J., Yao, D.S., et al., 2004.Guidebook of 1:1 500 000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Cartographic Publishing House, Chengdu.
      Rodi, W., MacKie, R.L., 2001.Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophys-ics, 66(1):174-187. doi: 10.1190/1.1444893
      Sun, J., 2013. The Genetic Study of Narusongduo Lead Zinc Ore Deposit in Middle Gangdese Belt, Tibet (Disserta-tion). China University of Geosciences, Beijing, 74-78(in Chinese with English abstract).
      Swift, C.M., 1967.A Magnetotelluric Investigation of an Elec-trical Conductivity Anomaly in the Southwestern United States. Massachusetts Institute of Technology, Cam-bridge.
      Tang, J.X., Duo, J., Liu, H.F., et al., 2012.Minerogenetic Se-ries of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4), 393-410(in Chinese with English abstract).
      Tang, J.X., Wang, L.Q., Zheng, W.B., et al., 2014.Ore Depos-its Metallogenic Regularity and Prospecting in the East-ern Section of the Gangdese Metallogenic Belt.Acta Geo-logica Sinica, 88(12):2545-2555(in Chinese with Eng-lish abstract).
      Tang, Z.L., Qian, Z.Z., Jiang, C.Y., et al., 2011.Trends of Re-search in Exploration of Magmatic Sulfide Deposits and Small Intrusions Metallogenic System. Journal of Earth Sciences and Environment, 33(1):1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201101003.htm
      Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature, 438(7064):78-81. https://doi.org/10.1038/nature04154
      Wang, G., Wei, W. B., Jin, S., et al., 2017. A Study on the Electrical Structure of Eastern Gangdese Metallogenic Belt. Chinese Journal of Geophysics, 60(8):2993-3003(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201708008.htm
      Wei, W., Unsworth, M., Jones, A., et al., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotellu-ric Studies. Science, 292(5517):716-719. https://doi.org/10.1126/science.1010580
      Wei, W. B., Jin, S., Ye, G. F., et al., 2009. The Conductivity Structure and Rheology of the Lithosphere in the South-ern Tibet:The Result of the Study of Ultra-Wide Band Magnetotelluric Sounding.Science in China(Series D), 39(11):1591-1606(in Chinese).
      Wessel, P., Smith, W.H.F., 1998.New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47):579. doi: 10.1029/98EO00426
      Xie, C. L., Jin, S., Wei, W. B., et al., 2016. Crustal Electrical Structures and Deep Processes of the Eastern Lhasa Ter-rane in the South Tibetan Plateau as Revealed by Mag-netotelluric Data.Tectonophysics, 675:168-180. https://doi.org/10.1016/j.tecto.2016.03.017
      Xu, Q., Zhao, J.M., Yuan, X.H., et al., 2015.Mapping Crustal Structure beneath Southern Tibet:Seismic Evidence for Continental Crustal Underthrusting. Gondwana Re-search, 27(4):1487-1493. https://doi.org/10.1016/j.gr.2014.01.006
      Zhang, L.T., 2017.A Review of Recent Developments in the Study of Regional Lithospheric Electrical Structure of the Asian Continent.Surveys in Geophysics, 38(5):1043-1096. https://doi.org/10.1007/s10712-017-9424-4
      Zhang, L.T., Jin, S., Wei, W.B., et al., 2012.Electrical Struc-ture of Crust and Upper Mantle beneath the Eastern Mar-gin of the Tibetan Plateau and the Sichuan Basin.Chinese Journal of Geophysics, 55(12):4126-4137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201212026.htm
      Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Ban-gong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.109
      Zheng, Y.Y., Sun, X., Zheng, H.T., et al., 2012.Magma Evo-lution of Small Intrusion and Mineralization in Gang-dese, Tibet. Northwestern Geology, 45(4):165-174(in Chinese with English abstract).
      Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009.Geochemical In-vestigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Ter-rane, Tibet. Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008
      Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension-and Arc-Type Magmatism in South-ern Tibet:Paleogeographic Implications.Geological Soci-ety of America Bulletin, 122(7-8):979-993. doi: 10.1130/B30062.1
      Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. The Lhasa Ter-rane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth & Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bi-modal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328:290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
      金胜, 2009.青藏高原的壳幔电性结构特征及其动力学意义(博士学位论文).北京: 中国地质大学, 67-80. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009075365.htm
      李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. http://www.earth-science.net/WebPage/Article.aspx?id=3905
      莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      孙骥, 2013.冈底斯中段纳如松多铅锌矿床成因研究(硕士学位论文).北京: 中国地质大学, 74-78. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014164884.htm
      唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4):393-410. doi: 10.3975/cagsb.2012.04.02
      唐菊兴, 王立强, 郑文宝, 等, 2014.冈底斯成矿带东段矿床成矿规律及找矿预测.地质学报, 88(12):2545-2555. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412027
      汤中立, 钱壮志, 姜常义, 等, 2011.岩浆硫化物矿床勘查研究的趋势与小岩体成矿系统.地球科学与环境学报, 33(1):1-9. doi: 10.3969/j.issn.1672-6561.2011.01.001
      王刚, 魏文博, 金胜, 等, 2017.冈底斯成矿带东段的电性结构特征研究.地球物理学报, 60(8):2993-3003. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201610003017.htm
      魏文博, 金胜, 叶高峰, 等, 2009.藏南岩石圈导电性结构与流变性——超宽频带大地电磁测深研究结果.中国科学(D辑), 39(11):1591-1606. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200911011.htm
      张乐天, 金胜, 魏文博, 等, 2012.青藏高原东缘及四川盆地的壳幔导电性结构研究.地球物理学报, 55(12):4126-4137. doi: 10.6038/j.issn.0001-5733.2012.12.025
      郑有业, 次琼, 吴松, 等, 2017西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. https://doi.org/10.3799/dqkx.2017.109
      郑有业, 孙祥, 郑海涛, 等, 2012.西藏冈底斯小斑岩体演化与成矿.西北地质, 45(4):165-174. doi: 10.3969/j.issn.1009-6248.2012.04.015
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (4501) PDF downloads(50) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return