• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Li Hongliang, Li Guangming, Liu Hong, Huang Hanxiao, Cao Huawen, Dai Zuowen, 2019. Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet: Constraints from Geochemistry, Zircon U-Pb Chronology and Sr-Nd-Pb-Hf Isotopes. Earth Science, 44(7): 2275-2294. doi: 10.3799/dqkx.2019.034
    Citation: Li Hongliang, Li Guangming, Liu Hong, Huang Hanxiao, Cao Huawen, Dai Zuowen, 2019. Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet: Constraints from Geochemistry, Zircon U-Pb Chronology and Sr-Nd-Pb-Hf Isotopes. Earth Science, 44(7): 2275-2294. doi: 10.3799/dqkx.2019.034

    Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet: Constraints from Geochemistry, Zircon U-Pb Chronology and Sr-Nd-Pb-Hf Isotopes

    doi: 10.3799/dqkx.2019.034
    • Received Date: 2018-12-26
    • Publish Date: 2019-07-15
    • The genesis of volcanic rocks in Dianzhong Formation of Linzizong Group has been deeply studied, but a large number of granitic porphyry emplaced has been neglected. Based on the field geological survey, the chronology, petrogeochemistry and Sr-Nd-Pb-Hf isotopes of granitic porphyry of Daruo area in the western Lhasa block were studied. The results show that the diagenetic ages of the two granitic porphyry samples are 61.9±0.3 Ma (MSWD=0.17) and 61.1±0.6 Ma (MSWD=0.69), respectively, indicating that they are products of Paleocene magmatic activities. Hornblende and aluminum-rich minerals are not found in the rocks, indicating they belong to the series of high potassium calc-potassium basaltic rocks, which are characterized by high SiO2 (76.16%-82.78%, average 78.28%), high alkali (K2O+Na2O=4.16%-6.93%, average 6.09%), low CaO(0.11%-0.16%, average 0.14%) and P2O5(0.02%-0.04%, average 0.03%). It is enriched in Rb, Th, K and LREE, and depleted in Ba, Nb, Sr, P, Ti and HREE. LREE and HREE have strong fractionation, and the negative Eu is very significant. These characteristics indicate that it belongs to weakly peraluminous and highly fractionated I-type granites. Daruo granite porphyry is rich in radiogenetic Pb, and the values of (208Pb/204Pb)t, (207Pb/204Pb)t and (206Pb/204Pb)t are 38.737-38.944, 15.661-15.682 and 18.079-18.624, respectively. Meanwhile, the granite porphyry has high (87Sr/86Sr)i value (0.722 739-0.744 497) and εNd(t) values (-6.82—-6.67), the εHf(t) values of zircon are only weakly and diffusely negative, and TDM2 is between 1 083 and 1 273 Ma, which means that there is a certain degree of decoupling between Nd-Hf isotopes. According to the comprehensive study, Daruo granite porphyry was formed in the early stage of the main collision convergence of the India-Eurasia plate (65-41 Ma), and the parent magma, formed by the interaction of the hysteretic subduction Neo-Tethys oceanic crust and mantle rocks, underplated beneath the ancient crust of Lhasa block, causing it to remelt and mix with a small part of mantle magma, then the granite porphyry was generated after a high degree of crystallization differentiation.

       

    • loading
    • Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733):252-255. https://doi.org/10.1038/20426
      Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2):365-401. https://doi.org/10.1093/petrology/32.2.365
      Beck, R. A., Burbank, D. W., Sercombe, W. J., et al., 1996. Late Cretaceous Ophiolite Obduction and Paleocene India-Asia Collision in the Westernmost Himalaya. Geodinamica Acta, 9(2-3):114-144. https://doi.org/10.1080/09853111.1996.11105281
      Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26. https://doi.org/10.1017/s0263593300007720
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types:25 Years Later. Australian Journal of Earth Sciences, 48(4):489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks. Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895
      Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7):559-562. https://doi.org/10.1130/g24658a.1
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      Ding, F., Xu, Z. B., Liu, S. H., et al., 2017. LA-ICP-MS Zircon U-Pb Ages, Petrochemical Characteristics and Petrogenesis of the Volcanic Rocks from the Palaeocene-Eocene Nianbo Formation in Chima Area, Coqen County, Xizang (Tibet). Geological Review, 63(4):1102-1116 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201704020
      Donaldson, D. G., Webb, A. A. G., Menold, C. A., et al., 2013. Petrochronology of Himalayan Ultrahigh-Pressure Eclogite. Geology, 41(8):835-838. https://doi.org/10.1130/g33699.1
      Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2002. Research Progress of Linzizong Volcanic Rocks in Linzhou Basin, Tibet. Earth Science Frontiers, 9(1):153 (in Chinese).
      Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2005. A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks in the Lhünzhub Basin, Northern Lhasa, Tibet, China. Geological Bulletin of China, 24(6):549-557 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200506012
      Dong, M. C., Zhao, Z. D., Zhu, D. C., et al., 2015. Geochronology, Geochemistry, and Petrogenesis of the Intermediate and Acid Dykes in Linzhou Basin, Southern Tibet. Acta Petrologica Sinica, 31(5):1268-1284. (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505006
      Ferrari, O. M., Hochard, C., Stampfli, G. M., 2008. An Alternative Plate Tectonic Model for the Palaeozoic-Early Mesozoic Palaeotethyan Evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451(1-4):346-365. https://doi.org/10.1016/j.tecto.2007.11.065
      Fu, W. C., Kang, Z. Q., Pan, H. B., 2014. Geochemistry, Zircon U-Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shi-Quan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6):850-859 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201406008
      Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11):1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5
      Guynn, J. H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34(6):505. https://doi.org/10.1130/g22453.1
      Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971):753-757. https://doi.org/10.1038/309753a0
      He, S. D., Kapp, P., DeCelles, P. G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433(1-4):15-37. https://doi.org/10.1016/j.tecto.2007.01.005
      Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025
      Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2):139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen:New Advances. Acta Geoscientica Sinica, 29(3):275-292 (in Chinese with English abstract).
      Huang, H. X., Li, G. M., Liu, H., et al., 2018. An Low Sulfide Epithermal Gold-Silver Polymetallic Deposit Newly Discovered in the Western Section of the Gangdise Metallogenic Belt. Geology in China, 45(3):628-629 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201803016
      Jiang, J. S., 2018. Genesis of Polymetallic Deposits and Propspecting Potential in the Linzizong Area, Western Gangdese Belt, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Ke, X. Z., Long W. G., Zhou D., et al., 2017. Metallogenesis of the Main Collisional Period in Mid-Western Gangdise:Zircon U-Pb Geochronology of the Granite Porphyry in Dexin Deposit, Tibet. Geological Bulletin of China, 36(5):772-779 (in Chinese with English abstract).
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      Kinny, P. D., Compston, W., Williams, I. S., 1991. A Reconnaissance Ion-Probe Study of Hafnium Isotopes in Zircons. Geochimica et Cosmochimica Acta, 55(3):849-859. https://doi.org/10.1016/0016-7037(91)90346-7
      Lassiter, J. C., DePaolo, D. J., 2013. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Mahoney, J. J., Coffin, M. F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. John Wiley & Sons, New York.
      Lee, H. Y., Chung, S. L., Ji, J. Q., et al., 2012. Geochemical and Sr-Nd Isotopic Constraints on the Genesis of the Cenozoic Linzizong Volcanic Successions, Southern Tibet. Journal of Asian Earth Sciences, 53(2):96-114. https://doi.org/10.1016/j.jseaes.2011.08.019
      Lee, H. Y., Chung, S. L., Lo, C. H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2):20-35. https://doi.org/10.1016/j.tecto.2009.02.031
      Leech, M. L., Singh, S., Jain, A. K., et al., 2005. The Onset of India-Asia Continental Collision:Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya. Earth and Planetary Science Letters, 234(1-2):83-97. https://doi.org/10.1016/j.epsl.2005.02.038
      Li, X. F., Wang, C. Z., Mao, W., et al., 2014. The Fault-Controlled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision:Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet. Ore Geology Reviews, 58(3):27-40. https://doi.org/10.1016/j.oregeorev.2013.10.006
      Li, Y., Zhang, S. Z., Li, F. Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8):2755-2766 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.593
      Liu, H., Li, G. M., Huang, H. X., et al., 2018. Petrogenesis of Late Cretaceous Jiangla'angzong I-Type Granite in Central Lhasa Terrane, Tibet, China:Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes. Acta Geologica Sinica (English Edition), 92(4):1396-1414. https://doi.org/10.1111/1755-6724.13634
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Maniar, P. D., Piccoli, P., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Meng, F. Y., Zhao, Z. D., Zhu, D. C., et al., 2014. Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane:Products of Back-Arc Extension of Neo-Tethyan Ocean?. Gondwana Research, 26(2):505-520. https://doi.org/10.1016/j.gr.2013.07.017
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
      Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia Can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201):419-426. https://doi.org/10.1126/science.189.4201.419
      Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1):1-16 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      Pearce, J. A., Kempton, P. D., Nowell, G. M., et al., 1999. Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems. Journal of Petrology, 40(11):1579-1611. https://doi.org/10.1093/petroj/40.11.1579
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      Pichavant, M., Montel, J. M., Richard, L. R., 1992. Apatite Solubility in Peraluminous Liquids:Experimental Data and an Extension of the Harrison-Watson Model. Geochimica et Cosmochimica Acta, 56(10):3855-3861. https://doi.org/10.1016/0016-7037(92)90178-l
      Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958):605-609. https://doi.org/10.1038/nature02031
      Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1):1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006
      Rubatto, D., 2002. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust, Elsevier-Pergamon, Oxford.
      Shi, C. Y., Yan, M. C., Liu, C. M., et al., 2005. Abundances of Chemical Elements in Granitoids of China and Their Characteristics. Geochimica, 34(5):56-68 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-dqkx200703007
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, J. X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet:A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientia Sinica, 37(4):461-470 (in Chinese with English abstract).
      Tang, P., Tang, J. X., Zheng, W. B., et al., 2018. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of the Volcanic Rocks in Dianzhong Formation from Xingaguo Area, Tibet. Acta Petrologica et Mineralogica, 37(1):47-60 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201801005
      Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3-4):533-556. https://doi.org/10.1016/s0016-7037(98)00274-9
      Wang, L. Q., Zhu, D. C., Geng, Q. R., et al., 2006. The Forming Age and Significance of Granitophyre Associated with Collision Process in Linzhou Basin of Gangdise Belt in Tibet. Chinese Science Bulletin, 51(16):1920-1928 (in Chinese).
      Wang, M., Wang, J, L., Hu, Y., et al., 2018. Geochemistry, Geochronology, Whole Rock Sr-Nd and Zircon Hf Isotopes of the Wulansala Granite Pluton in Xiemisitai Area, Xinjiang. Acta Petrologica Sinica, 34(3):618-636 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803006
      Watson, E. B., Harrison T. M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723):841-844. https://doi.org/10.1126/science.1110873
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
      Xie, B. J., Zhou, S., Xie, G. G., et al., 2013. Zircon SHRIMP U-Pb Data and Regional Contrasts of Geochemical Characteristics of Linzizong Volcanic Rocks from Konglong and Dinrenle Region, Middle Gangdese Belt. Acta Petrologica Sinica, 29(11):3803-3814 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013
      Xu, N., Wu, C. L., Lei, M., et al., 2018. Petrogenesis Zircon U-Pb Chronology, and Lu-Hf Isotopic Characteristics of the Monzonitic Granite from Mangya Area. Earth Science, 43(9):1-35 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.326
      Yu, Y. S., Gao, Y., Yang, Z. S., et al., 2018. Geochronology and Genesis of Quartz Diorite-Porphyrites of the Deneng Copper Polymetallic Deposit, Coqen, Tibet, China:Evidence from LA-ICP-MS Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb Isotopes. Acta Geologica Sinica, 92(7):1458-1473 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201807009
      Yue, X. Y., 2012. Geochemical Characteristics and Significance of Dianzhong Volcanic Rocks in the Cuoqin Area Tibet, China (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zartman, R. E., Doe, B. R., 1981. Plumbotectonics-The Model. Tectonophysics, 75(1-2):135-162. https://doi.org/10.1016/0040-1951(81)90213-4
      Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005
      Zhang, L., Huang, Y., Li, G. M., et al., 2016. Study of Quartz Diorite Porphyry by LA-ICP-MS U-Pb Dating and Lu-Hf Isotopic Tracing in the Zhunuo Porphyry Deposit, Tibet. Acta Mineralogica Sinica, 36(1):143-149 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201601022
      Zhang, Q., Pan, G. Q., Li, C. D., et al., 2007. Granitic Magma Mixing Versus Basaltic Magma Mixing:New Viewpoints on Granitic Magma Mixing Process:Some Crucial Questions on Granite Study (1). Acta Petrologica Sinica, 23(5):1141-1152 (in Chinese with English abstract).
      Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet:Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?. Gondwana Research, 17(4):615-631. https://doi.org/10.1016/j.gr.2009.10.007
      Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. 40Ar-39Ar Geochronology of Cenozoic Linzizong Volcanic Rocks from Linzhou Basin, Tibet, China, and Their Geological Implications. Chinese Science Bulletin, 49(18):1970-1979. https://doi.org/10.1007/bf03184291
      Zhu, B. Q., Chang, X. Y., 2001. Geochemical Provinces and Their Boundaries. Advance in Earth Sciences, 16(2):153-162 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200102003
      Zhu, B. Q., Zhang, J. L., Tu, X. L., et al., 2001. Pb, Sr, and Nd Isotopic Features in Organic Matter from China and Their Implications for Petroleum Generation and Migration. Geochimica et Cosmochimica Acta, 65(15):2555-2570. https://doi.org/10.1016/s0016-7037(01)00608-1
      Zhu, D. C., Wang, Q., Zhao, Z. D., 2017. Constraining Quantitatively the Timing and Process of Continent-Continent Collision Using Magmatic Record:Method and Examples. Science in China (Series D), 47(6):657-673 (in Chinese with English abstract).
      Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Corrigendum:Magmatic Record of India-Asia Collision. Scientific Reports, 5(1):17236. https://doi.org/10.1038/srep17236
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract).
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (Ca. Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      丁枫, 徐忠彪, 刘寿航, 等, 2017.西藏措勤赤马地区古近系年波组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因.地质论评, 63(4):1102-1116. http://d.old.wanfangdata.com.cn/Periodical/dzlp201704020
      董国臣, 莫宣学, 赵志丹, 等, 2002.西藏林周盆地林子宗火山岩研究近况.地学前缘, 9(1):153. doi: 10.3321/j.issn:1005-2321.2002.01.036
      董国臣, 莫宣学, 赵志丹, 等, 2005.拉萨北部林周盆地林子宗火山岩层序新议.地质通报, 24(6):549-557. doi: 10.3969/j.issn.1671-2552.2005.06.012
      董铭淳, 赵志丹, 朱弟成, 等, 2015.西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因.岩石学报, 31(5):1268-1284. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505006
      付文春, 康志强, 潘会彬, 2014.西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义.地质通报, 33(6):850-859. doi: 10.3969/j.issn.1671-2552.2014.06.008
      侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003
      黄瀚霄, 李光明, 刘洪, 等, 2018.冈底斯成矿带西段首次发现低硫化型浅成低温热液型矿床——罗布真金银多金属矿床.中国地质, 45(3):628-629. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201803016
      姜军胜, 2018.冈底斯西段林子宗群火山岩区多金属矿床成因及找矿潜力(博士学位论文).北京: 中国地质大学.
      柯贤忠, 龙文国, 周岱, 等, 2017.西藏冈底斯中西段主碰撞期成矿事件——德新矿区花岗斑岩锆石U-Pb年龄证据.地质通报, 36(5):772-779. doi: 10.3969/j.issn.1671-2552.2017.05.009
      李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43(8):2755-2766. http://earth-science.net/WebPage/Article.aspx?id=3910
      潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1):1-16. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001
      史长义, 鄢明才, 刘崇民, 等, 2005.中国花岗岩类化学元素丰度及特征.地球化学, 34(5):56-68. http://d.old.wanfangdata.com.cn/Periodical/dqhx200505005
      唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例.地球学报, 37(4):461-470. doi: 10.3975/cagsb.2016.04.08
      唐攀, 唐菊兴, 郑文宝, 等, 2018.西藏新嘎果地区典中组火山岩年代学、Hf同位素及地球化学特征.岩石矿物学杂志, 37(1):47-60. doi: 10.3969/j.issn.1000-6524.2018.01.005
      王立全, 朱弟成, 耿全如, 等, 2006.西藏冈底斯带林周盆地与碰撞过程相关花岗斑岩的形成时代及其意义.科学通报, 51(16):1920-1928. doi: 10.3321/j.issn:0023-074X.2006.16.011
      王敏, 王居里, 胡洋, 等, 2018.新疆谢米斯台地区乌兰萨拉岩体地球化学、年代学及全岩Sr-Nd和锆石Hf同位素研究.岩石学报, 34(3):618-636. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803006
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
      谢冰晶, 周肃, 谢国刚, 等, 2013.西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比.岩石学报, 29(11):3803-3814. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013
      徐楠, 吴才来, 雷敏, 等, 2018.茫崖二长花岗岩锆石U-Pb年代学、Lu-Hf同位素特征及岩石成因.地球科学, 43(9):1-35. http://earth-science.net/WebPage/Article.aspx?id=4099
      于玉帅, 高原, 杨竹森, 等, 2018.西藏措勤县德能铜多金属矿床石英闪长玢岩时代与成因:LA-ICP-MS锆石U-Pb年代学、地球化学和Sr-Nd-Pb同位素证据.地质学报, 92(7):1458-1473. doi: 10.3969/j.issn.0001-5717.2018.07.009
      岳相元, 2012.西藏措勤地区典中组火山岩地球化学特征及其地质意义(硕士学位论文).成都: 成都理工大学.
      张丽, 黄勇, 李光明, 等, 2016.西藏朱诺斑岩铜矿石英闪长斑岩锆石LA-ICP-MS U-Pb定年及Lu-Hf同位素研究.矿物学报, 36(1):143-149. http://d.old.wanfangdata.com.cn/Periodical/kwxb201601022
      张旗, 潘国强, 李承东, 等, 2007.花岗岩混合问题:与玄武岩对比的启示——关于花岗岩研究的思考之一.岩石学报, 23(5):1141-1152. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705026
      朱炳泉, 常向阳, 2001.地球化学省与地球化学边界.地球科学进展, 16(2):153-162. doi: 10.3321/j.issn:1001-8166.2001.02.003
      朱弟成, 王青, 赵志丹, 2017.岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例.中国科学(D辑), 47(6):657-673. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201706002
      朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1):1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (4883) PDF downloads(97) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return