Citation: | Ma Wang, Liu Yingchao, Yang Zhusen, Li Zhenqing, Zhao Xiaoyan, Yue Longlong, 2019. Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-CuMo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions. Earth Science, 44(6): 1957-1973. doi: 10.3799/dqkx.2019.041 |
André-Mayer, A.S., Leroy, J., Bailly, L., et al., 2002.Boiling and Vertical Mineralization Zoning:A Case Study from the Apacheta Low-Sulfidation Epithermal Gold-Silver Deposit, Southern Peru. Mineralium Deposita, 37(5):452-464. doi: 10.1007/s00126-001-0247-2.
|
Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78(3):535-542. doi: 10.2113/gsecon-geo.78.3.535
|
Bodnar, R. J., 1995. Fluid-Inclusion Evidence for a Magmatic Source for Metals in Porphyry Copper Deposits.Mineral-ogical Association of Canada Short Course Series, 23:139-152. doi: 10.1109-MAES.2011.5936180/
|
Chen, J., Wang, H. N., 2004. Chemical Geology. Science Press, Beijing(in Chinese).
|
Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196.doi: 10.1016/j.earscirev.2004.05.001
|
Du, X., 2013. The Study of Lead-Zinc Polymetallic Minera-Tipical Deposite and Lized Regularity Area Nyainqen-tanglha Tibet(Dissertation). China University of Geosci-ences, Beijing(in Chinese with English abstract).
|
Drummond, S.E., Ohmoto, H., 1985.Chemical Evolution and Mineral Deposition in Boiling Hydrothermal Systems.Economic Geology, 80(1):126-147. doi: 10.2113/gsecongeo.80.1.126
|
Fu, Q., Huang, K.X., Zheng, Y.C., et al., 2015.Ar-Ar Age of Muscovite from Skarn Orebody of the Mengya'a Lead-Zinc Deposit in Tibet and Its Geodynamic Significance.Acta Geologica Sinica, 89(3):569-582(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201503010
|
Fu, Q., Yang, Z.S., Zheng, Y.C., et al., 2013.Zircon U-Pb Ag-es, Hf Isotope and Geochemistry of Granodiorite in Jiala-pu Fe Deposit, Tibet. Mineral Deposits, 32(3):564-578(in Chinese with English abstract).
|
Fu, Q., Yang, Z. S., Zheng, Y. C., et al., 2014. Ar-Ar Age of Phlogopite from the Longmala Copper-Iron-Lead-Zinc Deposit in Tibet and Its Geodynamic Significance. Acta Petrologica et Mineralogica, 33(2):283-293(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201402007
|
Giggenbach, W.F., 1992.Isotopic Shifts in Waters from Geo-thermal and Volcanic Systems along Convergent Plate Boundaries and Their Origin. Earth and Planetary Sci-ence Letters, 113(4):495-510.doi: 10.1016/0012-821x(92)90127-h
|
Harrison, T.M., Grove, M., McKeegan, K.D., et al., 1999.Ori-gin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya.Journal of Petrology, 40(1):3-19. doi: 10.1093/petroj/40.1.3
|
Hedenquist, J. W., Henley, R. W., 1985. Hydrothermal Erup-tions in the Waiotapu Geothermal System, New Zealand; Their Origin, Associated Breccias, and Relation to Pre-cious Metal Mineralization. Economic Geology, 80(6):1640-1668. doi: 10.2113/gsecon-geo.80.6.1640
|
Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. doi: 10.2113/econgeo.110.6.1541
|
Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006b.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late-CollisionalTransformation Setting. Mineral De-posits, 25(5):521-543(in Chinese with English abstract).
|
Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006c.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineraliza-tion in Post-Collisional Extension Setting. Mineral De-posits, 25(6):629-651(in Chinese with English abstract).
|
Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006a.Metallogene-sis in Tibetan Collisional Orogenic Belt:I.Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4):337-358(in Chinese with English abstract).
|
Huang, K. X., Zheng, Y. C., Zhang, S., et al., 2012. LA-ICP-MS Zircon U-Pb Dating of Two Types of Porphyry in the Yaguila Mining Area, Tibet.Acta Petrologica et Mineral-ogica, 31(3):348-360(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201203005
|
Ji, X.H., Meng, X.J., Yang, Z.S., et al., 2014.The Ar-Ar Geo-chronology of Sericite from the Cryptoexplosive Breccia Type Pb-Zn Deposit in Narusongduo, Tibet and Its Geo-logical Significance. Geology and Exploration, 50(2):281-290(in Chinese with English abstract).
|
Landtwing, M., Pettke, T., Halter, W., et al., 2005. Copper Deposition during Quartz Dissolution by Cooling Mag-matic-Hydrothermal Fluids:The Bingham Porphyry. Earth and Planetary Science Letters, 235(1-2):229-243.doi: 10.1016/j.epsl.2005.02.046
|
Li, X.F., Wang, C.Z., Mao, W., et al., 2014.The Fault-Con-trolled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision:Example from Hahai-gang Deposit of Gangdese Metallogenic Belt of Tibet.Ore Geology Reviews, 58:27-40. doi: 10.1016/j.oregeorev.2013.10.006
|
Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China.Earth Sci-ence, 43(8):2684-2700(in Chinese with English abstract).
|
Liu, J.J., He, M.Q., Li, Z.M., 2004.Oxygen and Carbon Isoto-pic Geochemistry of Baiyangping Silver-Copper Polyme-tallic Ore Concentration Area in Lanping Basin of Yun-nan Province and Its Significance. Mineral Deposits, 23(1):1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200401000.htm
|
Lu, H.Z., Fan, H.R., Ni, P., et al., 2004.Fluid Inclusion.Sci-ence Press, Beijing(in Chinese).
|
Ma, W., Liu, Y.C., Yang, Z.S., et al., 2017.Alteration, Miner-alization, and Genesis of the Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Skarn Deposit, Tibet, China.Ore Geology Re-views, 90:897-912.doi: 10.1016/j.oregeor-ev.2017.04.034
|
Meng, X.J., Hou, Z.Q., Ye, P.S., et al., 2007.Characteristics and Ore Potentiality of Gangdese Silver-Polymetallic Mineralization Belt in Tibet. Mineral Deposits, 26(2):153-162(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200702002
|
Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volca-nic Succession in Southern Tibet.Chemical Geology, 250(1-4):49-67. doi: 10.1016/j.chem-geo.2008.02.003
|
Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3):135-148(in Chinese with English ab-stract).
|
Ohmoto, H., 1972.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology, 67(5):551-578.doi: 10.2113/gsecongeo.67.5.551
|
Pearce, J.A., Deng, W.M., 1988.The Ophiolites of the Tibet-an Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A:Mathematical, Physicaland Engineer-ing Sciences, 327(1594):215-238. doi: 10.1098/rsta.1988.0127
|
Schwinn, G., Wagner, T., Baatartsogt, B., et al., 2006.Quanti-fication of Mixing Processes in Ore-Forming Hydrother-mal Systems by Combination of Stable Isotope and Fluid Inclusion Analyses. Geochimica et Cosmochimica Acta, 70(4):965-982. doi: 10.1016/j.gca.2005.10.022
|
Seward, T.M., Barnes, H.L., 1997.Metal Transport by Hydro-thermal Ore Fluids. Geochemistry of Hydrothermal Ore Deposits, 3:435-486.
|
Shimizu, M., Iiyama, J.T., 1982.Zinc-Lead Skarn Deposits of the Nakatatsu Mine, Central Japan. Economic Geology, 77(4):1000-1012. doi: 10.2113/gsecon-geo.77.4.1000
|
Shmulovich, K.I., Landwehr, D., Simon, K., et al., 1999.Sta-ble Isotope Fractionation between Liquid and Vapour in Water-Salt Systems up to 600℃.Chemical Geology, 157(3-4):343-354. doi: 10.1016/S0009-2541(98)00202-2
|
Soloviev, S.G., 2011.Geology, Mineralization, and Fluid Inclu-sion Characteristics of the Kensu W-Mo Skarn and Mo-W-Cu-Au Alkalic Porphyry Deposit, Tien Shan, Kyrgyz-stan. Economic Geology, 106(2):193-222. doi: 10.2113/econgeo.106.2.193
|
Tang, J.X., Duo, J., Liu, H.F., et al., 2012.Minerogenetic Se-ries of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4):393-410(in Chinese with English abstract).
|
Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883.doi: 10.2113/gsecongeo.69.6.843
|
Taylor, B. E., 1986. Magmatic Volatiles; Isotopic Variation of C, H, and S.Reviews in Mineralogy and Geochemistry, 16(1):185-225. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsrmg&resid=16/1/185
|
Veizer, J., Holser, W. T., Wilgus, C. K., 1980. Correlation of 13C/12C and 34S/32S Secular Variation. Geochim. Cosmo-chim. Acta, 44:579-588. doi: 10.1016/0016-7037(80)90250-1
|
Wang, J., Liu, T. C., Yin, G., 2000. Characteristics of Isotope Distribution in Precipitation in the Middle-Lower Reach-es of Yarlung Zangbo Rivers.Geology-Geochemistry, 28(1):63-67.
|
Williams-Jones, A.E., Samson, I.M., Ault, K.M., et al., 2010.The Genesis of Distal Zinc Skarns:Evidence from the Mochito Deposit, Honduras. Economic Geology, 105(8):1411-1440. doi: 10.2113/econgeo.105.8.1411
|
Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
|
Yu, Y.S., Yang, Z.S., Duo, J., et al., 2011.Age and Petrogen-esis of Magmatic Rocks from Jiaduobule Skarn Fe-Cu Deposit in Tibet:From Zircon SHRIMP U-Pb Dating, Hf Isotope and REE.Mineral Deposits, 30(3):420-434(in Chinese with English abstract).
|
Zhang, A.P., Zheng, Y.C., Xu, B., et al., 2019.Metallogeny of the Lietinggang-Leqingla Fe-Cu-(Mo)-Pb-Zn Polymetal-lic Deposit, Evidence from Geochronology, Petrogene-sis, and Magmatic Oxidation State, Lhasa Terrane. Ore Geology Reviews, 106:318-339. doi: 10.1016/j.oregeorev.2019.02.004
|
Zhao, J.X., Qin, K.Z., Li, G.M., et al., 2014.Collision-Related Genesis of the Sharang Porphyry Molybdenum Deposit, Tibet:Evidence from Zircon U-Pb Ages, Re-Os Ages and Lu-Hf Isotopes.Ore Geology Reviews, 56:312-326.doi: 10.1016/j.oregeorev.2013.06.005
|
Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet.Ore Geology Reviews, 70:510-532. doi: 10.1016/j.oregeorev.2015.04.004
|
Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongma Porphyry Mo Deposit in the Banggong-Nujiang Metallogenic Belt, Tibet. Earth Sci-ence, 42(9):1141-1453 (in Chinese with English ab-stract).
|
Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension-and Arc-Type Magmatism in South-ern Tibet:Paleogeographic Implications.Geological Soci-ety of America Bulletin, 122(7-8):979-993. doi: 10.1130/b30062.1
|
Zhu, D.C., Wang, Q., Cawood, P.A., et al., 2017.Raising the Gangdese Mountains in Southern Tibet.Journal of Geo-physical Research:Solid Earth, 122(1):214-223. doi: 10.1002/2016JB013508
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Ter-rane, Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. doi: 10.1016/j.epsl.2010.11.005
|
陈骏, 王鹤年, 2004.地球化学.北京:科学出版社.
|
杜欣, 2013.西藏念青唐古拉地区铅锌多金属矿成因类型与成矿规律研究(博士学位论文).北京: 中国地质大学.
|
付强, 黄克贤, 郑远川, 等, 2015.西藏蒙亚啊铅锌矿床矽卡岩型矿体白云母Ar-Ar年代学研究及其地球动力学意义.地质学报, 89(3):569-582. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503010
|
付强, 杨竹森, 郑远川, 等, 2013.加拉普铁矿区花岗闪长岩锆石U-Pb年龄、Hf同位素及地球化学研究.矿床地质, 32(3):564-578. doi: 10.3969/j.issn.0258-7106.2013.03.008
|
付强, 杨竹森, 郑远川, 等, 2014.西藏龙马拉Cu-Fe-Pb-Zn多金属矿床金云母Ar-Ar定年及其地球动力学意义.岩石矿物学杂志, 33(2):283-293. doi: 10.3969/j.issn.1000-6524.2014.02.007
|
侯增谦, 潘桂棠, 王安建, 等, 2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
|
侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
|
侯增谦, 杨竹森, 徐文艺, 等, 2006a.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
|
黄克贤, 郑远川, 张松, 等, 2012.西藏亚贵拉矿区两期岩体LA-ICP-MS锆石U-Pb定年及地质意义.岩石矿物学杂志, 31(3):348-360. doi: 10.3969/j.issn.1000-6524.2012.03.005
|
纪现华, 孟祥金, 杨竹森, 等, 2014.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义.地质与勘探, 50(2):281-290. http://d.old.wanfangdata.com.cn/Periodical/dzykt201402008
|
李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. http://earth-science.net/WebPage/Article.aspx?id=3905
|
刘家军, 何明勤, 李志明, 等, 2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质, 23(1):1-10. doi: 10.3969/j.issn.0258-7106.2004.01.001
|
卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社.
|
孟祥金, 侯增谦, 叶培盛, 等, 2007.西藏冈底斯银多金属矿化带的基本特征与成矿远景分析.矿床地质, 26(2):153-162. doi: 10.3969/j.issn.0258-7106.2007.02.002
|
莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
|
唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4):393-410. doi: 10.3975/cagsb.2012.04.02
|
于玉帅, 杨竹森, 多吉, 等, 2011.西藏加多捕勒铁铜矿成矿岩体时代与成因:锆石U-Pb年龄、Hf同位素与稀土元素证据.矿床地质, 30(3):420-434. doi: 10.3969/j.issn.0258-7106.2011.03.004
|
郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. http://earth-science.net/WebPage/Article.aspx?id=3652
|
![]() |
![]() |