• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Dai Zuowen, Li Guangming, Ding Jun, Zhang Linkui, Cao Huawen, Zhang Zhi, Liang Wei, 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043
    Citation: Dai Zuowen, Li Guangming, Ding Jun, Zhang Linkui, Cao Huawen, Zhang Zhi, Liang Wei, 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043

    Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet

    doi: 10.3799/dqkx.2019.043
    • Received Date: 2018-07-20
    • Publish Date: 2019-06-15
    • In order to further constrain the source of the Cuonadong tourmaline granite, Tibet, morphology, chemical and isotopic composition of the tourmaline were studied by means of the microscope, electron probe, laser ablation multi-collector inductively coupled plasma mass spectrometer. The results indicate that the tourmaline from the Cuonadong tourmaline granite belongs to alkali group, and is schorl, which crystallized from boron-rich melts, indicating no obvious boron isotope fractionation between tourmaline and the melts has occurred.δ11B values of the tourmaline from the Cuonadong tourmaline granite range from-6.91‰ to-9.17‰, which are close to the average δ11B value (-10‰ ±3‰) of the continental crust, implying that the Cuonadong tourmaline granite was derived from partial melting of metasedimentay rock. However, δ11B values of the tourmaline from the Cuonadong tourmaline granite is much higher relative to granites derived from metasedimentary rock, and similar to δ11B values of Yardoi leucogranite reported by previous research, which was originated from garnet-amphibolite. Thus, besides metasedimentary rock, there was probably a small amount of garnet-amphibolite present in the source region of the the Cuonadong tourmaline granite.

       

    • loading
    • Chaussidon, M., Jambon, A., 1994. Boron Content and Isoto-pic Composition of Oceanic Basalts:Geochemical and Cosmochemical Implications. Earth and Planetary Sci-ence Letters, 121(3-4):731-733.
      Dai, J.Q., Li, G.R., Guo, F.S., et al., 2018.Chemical Compo-nents and Boron Isotopic Composition of Tourmaline of Uranium Bearing Porphyroclastic Lava in Xiangshan, Ji-angxi. Journal of Jilin University (Earth Science Edi-tion), 48(5):1378-1393(in Chinese with English ab-stract).
      Dutrow, B. L., Henry, D. J., 2011. Tourmaline:A Geologic DVD.Elements, 7(5):301-306. https://doi.org/10.2113/gselements.7.5.301
      Fu, J. G., Li, G. M., Wang, G. H., et al., 2018. Synchronous Granite Intrusion and E-W Extension in the Cuonadong Dome, Southern Tibet, China:Evidence from Field Ob-servations and Thermochronologic Results. International Journal of Earth Sciences, 107(6):2023-2041. https://doi.org/10.1007/s00531-018-1585-y
      Gou, G.N., Wang, Q., Wyman, D.A., et al., 2017.In Situ Bo-ron Isotopic Analyses of Tourmalines from Neogene Magmatic Rocks in the Northern and Southern Margins of Tibet:Evidence for Melting of Continental Crust and Sediment Recycling. Solid Earth Sciences, 2(2):43-54. https://doi.org/10.1016/j.sesci.2017.03.003
      Guo, H.F., Xia, X.P., Wei, G.J., et al., 2014.LA-MC-ICPMS In-Situ Boron Isotope Analyses of Tourmalines from the Shangbao Granites (Southern Hunan Province) and Its Geological Significance. Geochimica, 43(1):11-19(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201401002
      Hawthorne, F. C., Henrys, D. J., 1999. Classification of the Minerals of the Tourmaline Group.European Journal of Mineralogy, 11(2):201-216. https://doi.org/10.1127/ejm/11/2/0201
      Henry, D. J., Dutrow, B. L., 1996. Metamorphic Tourmaline and Its Petrologic Applications. Reviews in Mineralogy and Geochemistry, 33(1):503-557. http://cn.bing.com/academic/profile?id=5624de4ea1e2d938e90727595f57af0e&encoded=0&v=paper_preview&mkt=zh-cn
      Henry, D.J., Guidotti, C.V., 1985.Tourmaline as a Petrogenet-ic Indicator Mineral:An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralo-gist, 70(1-2):1-15.
      Henry, D. J., Novák, M., Hawthorne, F. C., et al., 2011. No-menclature of the Tourmaline-Supergroup Minerals.American Mineralogist, 96(5-6):895-913. https://doi.org/10.2138/am.2011.3636
      Hou, J. L., Wang, D. H., Li, J. K., et al., 2017. In-Situ Boron Isotopic Analysis and Its Geological Significance of Tourmalines from Zhongzuo Pegmatite Veins in Quyang Area of Hebei, China.Journal of Earth Sciences and En-vironment, 39(6):751-760(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201706006
      Hou, K.J., Li, Y.H., Xiao, Y.K., et al., 2010.In Situ Boron Iso-tope Measurements of Natural Geological Materials by LA-MC-ICP-MS. Chinese Science Bulletin, 55(29):3305-3311. doi: 10.1007/s11434-010-4064-9
      Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oli-gocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himala-yan Orogen.Earth and Planetary Science Letters, 349-350:38-52. https://doi.org/10.1016/j.epsl.2012.06.030
      Hu, G.Y., Zeng, L.S., Gao, L.E., et al., 2018.Diverse Magma Sources for the Himalayan Leucogranites:Evidence from B-Sr-Nd Isotopes.Lithos, 314-315:88-99. https://doi.org/10.1016/j.lithos.2018.05.022
      Huang, C. M., Zhao, Z. D., Li, G. M., et al., 2017. Leucogran-ites in Lhozag, Southern Tibet:Implications for the Tec-tonic Evolution of the Eastern Himalaya. Lithos, 294-295:246-262. https://doi.org/10.1016/j.lith-os.2017.09.014
      Jiang, S. Y., 2000. Boron Isotope and Its Geological Applica-tions.Geological Journal of China Universities, 6(1):1-16(in Chinese with English abstract).
      Jiang, S.Y., Palmer, M.R., 1998.Boron Isotope Systematics of Tourmaline from Granites and Pegmatites:A Synthesis.European Journal of Mineralogy, 10(6):1253-1266. https://doi.org/10.1127/ejm/10/6/1253
      Jiang, S.Y., Radvanec, M., Nakamura, E., et al., 2008.Chemi-cal and Boron Isotopic Variations of Tourmaline in the Hnilec Granite-Related Hydrothermal System, Slovakia:Constraints on Magmatic and Metamorphic Fluid Evolu-tion.Lithos, 106(1-2):1-11. https://doi.org/10.1016/j.lithos.2008.04.004
      Jiang, S.Y., Yu, J.M., Ling, H.F., et al., 2000a.Boron Isotope as a Tracer in the Study of Crust-Mantle Evolution and Subduction Processes. Earth Science Frontiers, 7(2):391-399(in Chinese with English abstract).
      Jiang, S.Y., Yu, J.M., Ni, P., et al., 2000b.Tourmaline:A Sen-sitive Tracer for Petrogenesis and Minerogenesis. Geo-logical Review, 46(6):594-604(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gncl201411017
      King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Geological Society of America Bulletin, 123(1-2):218-239. doi: 10.1130/B30085.1
      Liang, W., Zhang, L. K., Xia, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Sci-ence, 43(8):2742-2754(in Chinese with English ab-stract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808015
      London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England.Economic Geology, 90(3):495-519. https://doi.org/10.2113/gsecongeo.90.3.495
      Mao, J.W., Wang, P.A., Wang, D.H., et al., 1993.The Tracer of Tourmaline for Rock-Forming and Metallogenic Envi-ronments and Its Applied Conditions. Geological Re-view, 39(6):497-507(in Chinese with English abstract).
      Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes:No Element Left behind. Elements, 7(5):313-319. https://doi.org/10.2113/gselements.7.5.313
      Marschall, H. R., Ludwig, T., Altherr, R., et al., 2006. Syros Metasomatic Tourmaline:Evidence for very High-δ11B Fluids in Subduction Zones.Journal of Petrology, 47(10):1915-1942. https://doi.org/10.1093/petrology/egl031
      Pirajno, F., Smithies, R.H., 1992.The FeO/(FeO+MgO) Ra-tio of Tourmaline:A Useful Indicator of Spatial Varia-tions in Granite-Related Hydrothermal Mineral Deposits.Journal of Geochemical Exploration, 42(2-3):371-381. https://doi.org/10.1016/0375-6742(92)90033-5
      Trumbull, R. B., Krienitz, M. S., Gottesmann, B., et al., 2008 Chemical and Boron-Isotope Variations in Tourmalines from an S-Type Granite and Its Source Rocks:The Erongo Granite and Tourmalinites in the Damara Belt, Na-mibia. Contributions to Mineralogy and Petrology, 155(1):1-18. https://doi.org/10.1007/s00410-007-0227-3
      van Hinsberg, V.J., Henry, D.J., Marschall, H.R., 2011.Tour-maline:An Ideal Indicator of Its Host Environment. The Canadian Mineralogist, 49(1):1-16. https://doi.org/10.3749/canmin.49.1.1
      Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leuco-granite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      Xie, J. J., Qiu, H. N., Bai, X. J., et al., 2018. Geochronological and Geochemical Constraints on the Cuonadong Leuco-granite, Eastern Himalaya.Acta Geochimica, 37(3):347-359. https://doi.org/10.1007/s11631-018-0273-8
      Yang, S. Y., Jiang, S. Y., 2012. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China:Evidence for Boron Mobilization and Infiltration during Magmatic-Hydro-thermal Processes. Chemical Geology, 312:177-189. https://doi.org/10.1016/j.chemgeo.2012.04.026
      Yang, S. Y., Jiang, S. Y., Palmer, M. R., 2015. Chemical and Boron Isotopic Compositions of Tourmaline from the Nyalam Leucogranites, South Tibetan Himalaya:Implica-tion for Their Formation from B-Rich Melt to Hydrother-mal Fluids. Chemical Geology, 419:102-113. https://doi.org/10.1016/j.chemgeo.2015.10.026
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications.Chinese Science Bulletin, 54(1):104-112. doi: 10.1007/s11434-008-0362-x
      Zhang, L. K., Zhang, B., Zhang, B. H., et al., 2018. Chemical and Boron Isotopic Composition of Hydrothermal Tour-maline from Nanyangtian Tungsten Deposit, Yunnan:Im-plications for Ore Genesis.Mineral Deposits, 37(3):481-501(in Chinese with English abstract).
      Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mecha-nism of Leucogranites. Earth Science, 43(1):82-98(in Chinese with English abstract).
      Zheng, Y.C., Hou, Z.Q., Fu, Q., et al., 2016.Mantle Inputs to Himalayan Anatexis:Insights from Petrogenesis of the Miocene Langkazi Leucogranite and Its Dioritic En-claves.Lithos, 264:125-140. https://doi.org/10.1016/j.lithos.2016.08.019
      戴加祺, 黎广荣, 郭福生, 等, 2018.江西相山铀矿田含铀碎斑熔岩中电气石化学成分及硼同位素组成特征.吉林大学学报(地球科学版), 48(5):1378-1393. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201805008
      郭海锋, 夏小平, 韦刚健, 等, 2014.湘南上堡花岗岩中电气石LA-MC-ICPMS原位微区硼同位素分析及地质意义.地球化学, 43(1):11-19. http://d.old.wanfangdata.com.cn/Periodical/dqhx201401002
      侯江龙, 王登红, 李建康, 等, 2017.河北曲阳地区中佐伟晶岩脉中电气石原位硼同位素分析及其意义.地球科学与环境学报, 39(6):751-760. doi: 10.3969/j.issn.1672-6561.2017.06.006
      蒋少涌, 2000.硼同位素及其地质应用研究.高校地质学报, 6(1):1-16. doi: 10.3969/j.issn.1006-7493.2000.01.001
      蒋少涌, 于际民, 凌洪飞, 等.2000a.壳幔演化和板块俯冲作用过程中的硼同位素示踪.地学前缘, 7(2):391-399. http://d.old.wanfangdata.com.cn/Periodical/dxqy200002008
      蒋少涌, 于际民, 倪培, 等, 2000b.电气石——成矿作用的灵敏示踪剂.地质论评, 46(6):594-604. http://d.old.wanfangdata.com.cn/Periodical/dzlp200006006
      梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学, 43(8):2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909
      毛景文, 王平安, 王登红, 等, 1993.电气石对成岩成矿环境的示踪性及应用条件.地质论评, 39(6):497-507. doi: 10.3321/j.issn:0371-5736.1993.06.004
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      张林奎, 张彬, 张斌辉, 等, 2018.云南南秧田钨矿床电气石的成分和硼同位素特征及成矿意义.矿床地质, 37(3):481-501. http://d.old.wanfangdata.com.cn/Periodical/kcdz201803003
      张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. http://earth-science.net/WebPage/Article.aspx?id=3726
    • dqkx-44-6-1849-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (4778) PDF downloads(92) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return