• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Guo Jingliang, Zhang Hongfei, Xu Wangchun, Guo Liang, Wu Yao, Cui Dandan, 2019. The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin. Earth Science, 44(6): 1809-1821. doi: 10.3799/dqkx.2019.050
    Citation: Guo Jingliang, Zhang Hongfei, Xu Wangchun, Guo Liang, Wu Yao, Cui Dandan, 2019. The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin. Earth Science, 44(6): 1809-1821. doi: 10.3799/dqkx.2019.050

    The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin

    doi: 10.3799/dqkx.2019.050
    • Received Date: 2018-09-30
    • Publish Date: 2019-06-15
    • The structure and composition of orogenic belts are important for understanding the chemical evolution of the continental crust and the background for metallogenesis. This study integrates previously published crustal seismic structures, experimentally determined petrophysical properties of various rock types, and geochemical data of magmatic rocks from the southeastern Lhasa Terrane, in order to discuss the compositional features of the continental crust in this region and their possible causes. The average crustal seismic velocity in this region is lower than the average values of global continental crust and orogenic belts, suggesting a more felsic composition for the bulk continental crust. Moreover, the lower crust could also be composed of intermediate rocks (restitic intermediate garnet granulite). The felsic bulk crustal composition of the southeastern Lhasa terrane is supposed to be related to multiple episodes of felsification, including the pre-collisional continental arc evolution stage (mainly by delamination of cumulate or restitic lower crust) and the post-collisional plateau collapsing stage (mainly by delamination of thickened lower crust, which is accompanied by the relamination/tectonic underthrusting of felsic materials from the ancient Indian continental crust). The Lhasa terrane is one of the best places to study the chemical differentiation of continental crust, which demands further comprehensive studies of multiple disciplines.

       

    • loading
    • Abers, G.A., Hacker, B.R., 2016.A MATLAB Toolbox and Excel Workbook for Calculating the Densities, Seismic Wave Speeds, and Major Element Composition of Minerals and Rocks at Pressure and Temperature. Geochemistry, Geophysics, Geosystems, 17(2):616-624. https://doi.org/10.1002/2015gc006171
      Bai, Z.M., Zhang, S.F., Braitenberg, C., 2013.Crustal Density Structure from 3D Gravity Modeling beneath Himalaya and Lhasa Blocks, Tibet. Journal of Asian Earth Sciences, 78:301-317. https://doi.org/10.1016/j.jseaes.2012.12.035
      Beck, S.L., Zandt, G., 2002.The Nature of Orogenic Crust in the Central Andes.Journal of Geophysical Research(Solid Earth), 107(B10):ESE 7-1-ESE 7-16. https://doi.org/10.1029/2000JB000124
      Becker, M., Le Roex, A.P., 2006.Geochemistry of South African on-and off-Craton, Group I and Group Ⅱ Kimberlites:Petrogenesis and Source Region Evolution. Journal of Petrology, 47(4):673-703. https://doi.org/10.1093/petrology/egi089
      Chan, G.N., Waters, D.J., Searle, M.P., et al., 2009.Probing the Basement of Southern Tibet:Evidence from Crustal Xenoliths Entrained in a Miocene Ultrapotassic Dyke.Journal of the Geological Society, 166(1):45-52. https://doi.org/10.1144/0016-76492007-145
      Chapman, A. D., Ducea, M. N., Kidder, S., et al., 2014. Geochemical Constraints on the Petrogenesis of the Salinian Arc, Central California:Implications for the Origin of Intermediate Magmas.Lithos, 200-201:126-141. https://doi.org/10.1016/j.lithos.2014.04.011
      Chapman, J. B., Ducea, M. N., Kapp, P., et al., 2017. Spatial and Temporal Radiogenic Isotopic Trends of Magmatism in Cordilleran Orogens. Gondwana Research, 48:189-204. https://doi.org/10.1016/j.gr.2017.04.019
      Chapman, J.B., Kapp, P., 2017.Tibetan Magmatism Database.Geochemistry, Geophysics, Geosystems, 18(11):4229-4234. doi: 10.1002/2017GC007217
      Christensen, N. I., Mooney, W. D., 1995. Seismic Velocity Structure and Composition of the Continental Crust:A Global View. Journal of Geophysical Research:Solid Earth, 100(B6):9761-9788. doi: 10.1029/95JB00259
      Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks.Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31 (3):1021-1024.
      De Paoli, M. C., Clarke, G. L., Daczko, N. R., 2012. Mineral Equilibria Modeling of the Granulite-Eclogite Transition:Effects of Whole-Rock Composition on Metamorphic Facies Type-Assemblages. Journal of Petrology, 53(5):949-970. https://doi.org/10.1093/petrology/egs004
      DeCelles, P.G., Ducea, M.N., Kapp, P., et al., 2009.Cyclicity in Cordilleran Orogenic Systems. Nat. Geosci., 2(4):251-257. https://doi.org/10.1038/ngeo469
      DeCelles, P.G., Horton, B.K., 2003.Early to Middle Tertiary Foreland Basin Development and the History of Andean Crustal Shortening in Bolivia.Bulletin of the Geological Society of America, 115(1):58-77. doi: 10.1130/0016-7606(2003)115<0058:ETMTFB>2.0.CO;2
      Ding, L., Xu, Q., Yue, Y.H., et al., 2014.The Andean-Type Gangdese Mountains:Paleoelevation Record from the Paleocene-Eocene Linzhou Basin.Earth and Planetary Science Letters, 392:250-264. https://doi.org/10.1016/j.epsl.2014.01.045
      Ding, L., Yue, Y. H., Cai, F. L., et al., 2006.40Ar/39Ar Geochronology, Geochemical and Sr-Nd-O Isotopic Characteristics of the High-Mg Ultrapotassic Rocks in Lhasa Block of Tibet:Implications in the Onset Time and Depth of NS-Striking Rift System.Acta Geologica Sinica, 80(9):1252-1261(in Chinese with English abstract).
      Dong, X., Zhang, Z.M., Liu, F., et al., 2014.Late Paleozoic Intrusive Rocks from the Southeastern Lhasa Terrane, Tibetan Plateau, and Their Late Mesozoic Metamorphism and Tectonic Implications.Lithos, 198:249-262. https://doi.org/10.1016/j.lithos.2014.04.001
      Ducea, M.N., 2011.Fingerprinting Orogenic Delamination.Geology, 39(2):191-192. doi: 10.1130/focus022011.1
      Ducea, M.N., Chapman, A.D., 2018.Sub-Magmatic Arc Underplating by Trench and Forearc Materials in Shallow Subduction Systems; A Geologic Perspective and Implications. Earth-Science Reviews, 185:763-779. https://doi.org/10.1016/j.earscirev.2018.08.001
      Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015.The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs.Annual Review of Earth and Planetary Sciences, 43(1):299-331. doi: 10.1146/annurev-earth-060614-105049
      Fielding, E.J., 1996.Tibet Uplift and Erosion.Tectonophysics, 260(1-3):55-84. doi: 10.1016/0040-1951(96)00076-5
      Francheteau, J., Jaupart, C., Jie, S, X., 1984.High Heat Flow in Southern Tibet.Nature, 307:32-36. https://doi.org/10.1038/307032a0
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton.Nature, 432:892-897. https://doi.org/10.1038/nature03162
      Grove, T., Parman, S., Bowring, S., et al., 2002.The Role of an H2O-Rich Fluid Component in the Generation of Primitive Basaltic Andesites and Andesites from the Mt. Shasta Region, N California.Contributions to Mineralogy and Petrology, 142(4):375-396. https://doi.org/10.1007/s004100100299
      Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2012.Crustal Thickening Prior to 38 Ma in Southern Tibet:Evidence from Lower Crust-Derived Adakitic Magmatism in the Gangdese Batholith.Gondwana Research, 21(1):88-99. https://doi.org/10.1016/j.gr.2011.07.004
      Guo, Z.F., Wilson, M., Liu, J.Q., 2007.Post-Collisional Adakites in South Tibet:Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1-2):205-224. https://doi.org/10.1016/j.lithos.2006.09.011
      Guynn, J., Kapp, P., Gehrels, G. E., et al., 2012. U-Pb Geochronology of Basement Rocks in Central Tibet and Paleogeographic Implications. Journal of Asian Earth Sciences, 43(1):23-50. https://doi.org/10.1016/j.jseaes.2011.09.003
      Hacker, B.R., Kelemen, P.B., Behn, M.D., 2011.Differentiation of the Continental Crust by Relamination.Earth and Planetary Science Letters, 307(3-4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024
      Hacker, B.R., Kelemen, P.B., Behn, M.D., 2015.Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 43(1):167-205. doi: 10.1146/annurev-earth-050212-124117
      Harrison, T.M., Copeland, P., Kidd, W.S., et al., 1992.Raising Tibet.Science 255:1663-1670. doi: 10.1126/science.255.5052.1663
      Henry, P., Le Pichon, X., Goffé, B., 1997.Kinematic, Thermal and Petrological Model of the Himalayas:Constraints Related to Metamorphism within the Underthrust Indian Crust and Topographic Elevation. Tectonophysics, 273(1-2):31-56. doi: 10.1016/S0040-1951(96)00287-9
      Hetényi, G., Cattin, R., Brunet, F., et al., 2007.Density Distribution of the India Plate beneath the Tibetan Plateau:Geophysical and Petrological Constraints on the Kinetics of Lower-Crustal Eclogitization. Earth and Planetary Science Letters, 264(1-2):226-244. https://doi.org/10.1016/j.epsl.2007.09.036
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155. doi: 10.1016/S0012-821X(04)00007-X
      Jagoutz, O., Behn, M. D., 2013. Foundering of Lower IslandArc Crust as an Explanation for the Origin of the Continental Moho. Nature, 504:131-134. https://doi.org/10.1038/nature12758
      Jagoutz, O., Schmidt, M. W., 2012. The Formation and Bulk Composition of Modern Juvenile Continental Crust:The Kohistan Arc. Chemical Geology, 298-299:79-96. https://doi.org/10.1016/j.chemgeo.2011.10.022
      Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2012.Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution. The Journal of Geology, 120(5):531-541. https://doi.org/10.1086/666742
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2014.The Gangdese Magmatic Constraints on a Latest Cretaceous Lithospheric Delamination of the Lhasa Terrane, Southern Tibet. Lithos, 210-211:168-180. https://doi.org/10.1016/j.lithos.2014.10.001
      Kapp, P., DeCelles, P.G., Leier, A.L., et al., 2007.The Gangdese Retroarc Fold-Thrust Belt Revealed.GSA Today, 17:4-9.
      Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism.Tectonophysics, 219(1-3):177-189. doi: 10.1016/0040-1951(93)90295-U
      Kelemen, P.B., Behn, M.D., 2016.Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons. Nature Geoscience, 9(3):197-205. https://doi.org/10.1038/ngeo2662
      Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle beneath Tibet:Evidence for Eurasian Plate Subduction.Science, 298(5596):1219-1221. doi: 10.1126/science.1078115
      Kola-Ojo, O., Meissner, R., 2001. Southern Tibet:Its Deep Seismic Structure and Some Tectonic Implications.Journal of Asian Earth Sciences, 19(1-2):249-256. https://doi.org/10.1016/s1367-9120(00)00041-9
      Kono, Y., Ishikawa, M., Harigane, Y., et al., 2009.P-and S-Wave Velocities of the Lowermost Crustal Rocks from the Kohistan Arc:Implications for Seismic Moho Discontinuity Attributed to Abundant Garnet. Tectonophysics, 467(1-4):44-54. https://doi.org/10.1016/j.tecto.2008.12.010
      Kushiro, I., Syono, Y., Akimoto, S.I., 1968.Melting of a Peridotite Nodule at High Pressures and High Water Pressures. Journal of Geophysical Research, 73(18):6023-6029. doi: 10.1029/JB073i018p06023
      Lee, C.T.A., Anderson, D.L., 2015.Continental Crust Formation at Arcs, the Arclogite "Delamination" Cycle, and One Origin for Fertile Melting Anomalies in the Mantle.Science Bulletin, 60(13):1141-1156. https://doi.org/10.1007/s11434-015-0828-6
      Leech, M.L., 2001.Arrested Orogenic Development:Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1-2):149-159. https://doi.org/10.1016/s0012-821x(00)00374-5
      Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous Crustal Growth in the Gangdese Area, Southern Tibet:Petrological and Sr-Nd-Hf-O Isotopic Evidence from Zhengga Diorite-Gabbro.Chemical Geology, 349-350:54-70. https://doi.org/10.1016/j.chemgeo.2013.04.005
      Ma, X.X., ,Xu, Z.Q., Meert, J.G., 2017.Syn-Convergence Extension in the Southern Lhasa Terrane:Evidence from Late Cretaceous Adakitic Granodiorite and Coeval Gabbroic-Dioritic Dykes. Journal of Geodynamics, 110:12-30. doi: 10.1016/j.jog.2017.07.004
      Maierová, P., Schulmann, K., Gerya, T., 2018. Relamination Styles in Collisional Orogens.Tectonics, 37(1):224-250. https://doi.org/10.1002/2017tc004677
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Meissner, R., Mooney, W., 1998.Weakness of the Lower Continental Crust:A Condition for Delamination, Uplift, and Escape. Tectonophysics, 296(1-2):47-60. https://doi.org/10.1016/s0040-1951(98)00136-x
      Meissner, R., Tilmann, F., Haines, S., 2004.About the Lithospheric Structure of Central Tibet, Based on Seismic Data from the INDEPTH Ⅲ Profile. Tectonophysics, 380(1-2):1-25. https://doi.org/10.1016/j.tecto.2003.11.007
      Meng, Y.K., Xu, Z.Q., Santosh, M., et al., 2016.Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt.Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007
      Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424. https://doi.org/10.1093/petroj/40.9.1399
      Mitchell, A.L., Grove, T.L., 2015.Melting the Hydrous, Subarc Mantle:The Origin of Primitive Andesites. Contributions to Mineralogy and Petrology, 170(2):13. https://doi.org/10.1007/s00410-015-1161-4
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007.Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet.Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      Nábelek, J., Hetényi, G., Vergne, J., et al., 2009.Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment.Science, 325(5946):1371-1374. doi: 10.1126/science.1167719
      Nelson, K.D., Zhao, W.J., Brown, L.D., et al., 1996.Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results. Science, 274(5293), 1684-1688. doi: 10.1126/science.274.5293.1684
      Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Owens, T.J., Zandt, G., 1997.Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387:37-43. https://doi.org/10.1038/387037a0
      Pan, G.T., Ding, J., Yao, D.S., et al., 2004.1:1 500 000 Geological Map of Qinghai-Xizang Plateau and Its Adjacent Regions. Chengdu Cartographic Publishing House, Chengdu(in Chinese).
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Patiño Douce, A.E., 2004.Vapor-Absent Melting of Tonalite at 15-32 kbar.Journal of Petrology, 46(2):275-290. doi: 10.1093/petrology/egh071
      Qian, Q., Hermann, J., 2013.Partial Melting of Lower Crust at 10-15 kbar:Constraints on Adakite and TTG Formation.Contributions to Mineralogy and Petrology, 165(6):1195-1224. https://doi.org/10.1007/s00410-013-0854-9
      Rodgers, A. J., Schwartz, S. Y., 1997. Low Crustal Velocities and Mantle Lithospheric Variations in Southern Tibet from Regional Pnl Waveforms. Geophysical Research Letters, 24(1):9-12. https://doi.org/10.1029/96gl03774
      Rudnick, R. L., 1995. Making Continental Crust. Nature, 378:571-578. doi: 10.1038/378571a0
      Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267. https://doi.org/10.1029/95rg01302
      Rudnick, R.L., Gao, S., 2003.3.01-Composition of the Continental Crust.Treatise on Geochemistry, 3:1-64.
      Saleeby, J., Ducea, M., Clemens-Knott, D., 2003. Production and Loss of High-Density Batholithic Root, Southern Sierra Nevada, California.Tectonics, 22(6):1-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=adcb120e4765fe12cc7199084a122f61
      Sherrington, H. F., Zandt, G., Frederiksen, A., 2004. Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters.Journal of Geophysical Research:Solid Earth, 109(B2):943. doi: 10.1029-2002JB002345/
      Wang, J.G., Hu, X.M., Garzanti, E., et al., 2017.Early Cretaceous Topographic Growth of the Lhasaplano, Tibetan Plateau:Constraints from the Damxung Conglomerate.Journal of Geophysical Research:Solid Earth, 122(7):5748-5765. doi: 10.1002/jgrb.v122.7
      Wang, Q., 2005. Shear Wave Properties and Poisson's Ratios of Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt, China:Implications for Crustal Composition. Journal of Geophysical Research, 110(B8). https://doi.org/10.1029/2004jb003435
      Wang, Q., Ji, S.C., Salisbury, M.H., et al., 2005.Pressure Dependence and Anisotropy of P-Wave Velocities in Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt (China):Implications for Seismic Properties of Subducted Slabs and Origin of Mantle Reflections.Tectonophysics, 398(1-2):67-99. https://doi.org/10.1016/j.tecto.2004.12.001
      Wang, R., Collins, W. J., Weinberg, R. F., et al., 2016. Xenoliths in Ultrapotassic Volcanic Rocks in the Lhasa Block:Direct Evidence for Crust-Mantle Mixing and Metamorphism in the Deep Crust. Contributions to Mineralogy and Petrology, 171(7):62. https://doi.org/10.1007/s00410-016-1272-6
      Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet.Earth-Science Reviews, 181:122-143. https://doi.org/10.1016/j.earscirev.2018.02.019
      Ward, K.M., Zandt, G., Beck, S.L., et al., 2016.Lithospheric Structure beneath the Northern Central Andean Plateau from the Joint Inversion of Ambient Noise and Earthquake-Generated Surface Waves.Journal of Geophysical Research:Solid Earth, 121(11):8217-8238. https://doi.org/10.1002/2016jb013237
      Xu, Z.Q., Zhao, Z.B., Peng, M., et al., 2016.Review of "Orogenic Plateau". Acta Petrologica Sinica, 32(12):3557-3571(in Chinese with English abstract).
      Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015.High-Mg Diorite from Qulong in Southern Tibet:Implications for the Genesis of Adakite-Like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens.Journal of Petrology, 56(2):227-254. https://doi.org/10.1093/petrology/egu076
      Yuan, X.H., Ni, J., Kind, R., et al., 1997.Lithospheric and Upper Mantle Structure of Southern Tibet from a Seismological Passive Source Experiment.Journal of Geophysical Research:Solid Earth, 102(B12):27491-27500. https://doi.org/10.1029/97jb02379
      Zhang, Z. J., Deng, Y. F., Teng, J. W., et al., 2011. An Overview of the Crustal Structure of the Tibetan Plateau after 35 Years of Deep Seismic Soundings. Journal of Asian Earth Sciences, 40(4):977-989. https://doi.org/10.1016/j.jseaes.2010.03.010
      Zhang, Z. M., Dong, X., Xiang, H., et al., 2014. Metagabbros of the Gangdese Arc Root, South Tibet:Implications for the Growth of Continental Crust. Geochimica et Cosmochimica Acta, 143:268-284. https://doi.org/10.1016/j.gca.2014.01.045
      Zhao, Z.D., Mo, X.X., Dilek, Y., et al., 2009.Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2):190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2009. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective. Earth Science Frontiers, 16(2):1-20(in Chinese with English abstract).
      Zhu, D.C., Wang, Q., Cawood, P.A., et al., 2017.Raising the Gangdese Mountains in Southern Tibet.Journal of Geophysical Research:Solid Earth, 122(1):214-223. doi: 10.1002/2016JB013508
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      丁林, 岳雅慧, 蔡福龙, 等, 2006.西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约.地质学报, 80(9):1252-1261. doi: 10.3321/j.issn:0001-5717.2006.09.003
      潘桂棠, 丁俊, 姚东生, 等, 2004.青藏高原及邻区地质图(1:1 500 000).成都:成都地图出版社.
      许志琴, 赵中宝, 彭淼, 等, 2016.论"造山的高原".岩石学报, 32(12):3557-3571. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612001.htm
      朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (6306) PDF downloads(97) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return