• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Liu Hong, Zhang Linkui, Huang Hanxiao, Li Guangming, Ouyang Yuan, Lü Menghong, Liu Han, Lan Shuangshuang, Yan Guoqiang, 2019. Petrogenesis of Late Triassic Luerma Monzodiorite in Western Gangdise, Tibet, China. Earth Science, 44(7): 2339-2352. doi: 10.3799/dqkx.2019.051
    Citation: Liu Hong, Zhang Linkui, Huang Hanxiao, Li Guangming, Ouyang Yuan, Lü Menghong, Liu Han, Lan Shuangshuang, Yan Guoqiang, 2019. Petrogenesis of Late Triassic Luerma Monzodiorite in Western Gangdise, Tibet, China. Earth Science, 44(7): 2339-2352. doi: 10.3799/dqkx.2019.051

    Petrogenesis of Late Triassic Luerma Monzodiorite in Western Gangdise, Tibet, China

    doi: 10.3799/dqkx.2019.051
    • Received Date: 2019-01-31
    • Publish Date: 2019-07-15
    • The study on the evolution model of the New Tethys Ocean in Yarlung Zangbo has been seriously restricted due to the lack of in-depth research on magmatism during and even before the Late Triassic In order to discuss the geodynamic background of the Late Triassic magmatism in Dajia Co area of western Gangdise, this paper presents a study on petrology, geochemistry and chronology of the Ruerma monzodiorite. LA-ICP-MS zircon U-Pb analyses suggest that monzodiorite has two weighted mean 206Pb/238U ages of 212.1±0.6 Ma (mean square weighted deviation=0.97), and 212.8±0.2 Ma (mean square weighted deviation=0.74), which suggests that the Luerma magmatism event took place during the late Triassic epoch. The rocks contain plagioclase, potassium feldspar and amphibole, and contain a small amount of quartz, pyroxene, biotite, magnetite and apatite. They have moderate contents of SiO2 (50.75%-54.69%), and A12O3 (13.77%-19.17%), high contents of K2O (2.71%-3.99%), total K2O+Na2O (5.84%-8.65%), and CaO (4.90%-10.14%), with a Reitman index (σ43) of 3.40 to 7.65, and A/CNK values of 0.56 to 1.00. These characteristics suggest that the Luerma monzodiorite is a quasi-aluminous and alkaline-shoshonite series. The rocks are enriched in light rare earth elements (LREE) and large ion lithofile elements (LILE), and depleted in heavy rare earth elements (HREE) and high field strength elements(HFSE), with LREE/HREE ratios of 7.45 to 11.10. They have weakly negative Eu anomalies of 0.83 to 0.95 without obvious Ce anomalies (δCe=0.93-1.04). The relatively low initial 87Sr/86Sr ratios of 0.705 532 to 0.706 135, positive εHf(t) values of 4.97 to 14.10, and two-stage Hf model ages (TDM2) ranging from 348 Ma to 930 Ma, indicate that the rocks derived from a juvenile crust. The monzodiorite's (143Nd/144Nd)t values range from 0.512 639 to 0.512 669, their εHf(t) values range from 0.08 to 0.67, their (206Pb/204Pb)t values range from 18.235 to 18.521, their (207Pb/204Pb)t values range from 15.593 to 15.651, and their (208Pb/204Pb)t values range from 39.948 to 38.579. These data indicate that the Luerma monzodiorite was formed by partial melting of the juvenile crust. We propose that the Luerma monzodiorite was formed during the northward subduction of Yarlu Zangbo oceanic crust of the Neo Tethys Ocean.

       

    • loading
    • Arnaud, N. O., Vidal, P., Tapponnier, P., et al., 1992. The High K2O Volcanism of Northwestern Tibet:Geochemistry and Tectonic Implications. Earth and Planetary Science Letters, 111(2-4):351-367. https://doi.org/10.1016/0012-821x(92)90189-3
      Baxter, A. T., Aitchison, J. C., Ali, J. R., et al., 2016. Detrital Chrome Spinel Evidence for a Neotethyan Intra-Oceanic Island Arc Collision with India in the Paleocene. Journal of Asian Earth Sciences, 128:90-104. https://doi.org/10.1016/j.jseaes.2016.06.023
      Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola:Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5):554-566. https://doi.org/10.1007/s004100000211.
      Blichert Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127 (3):248-260. https://doi.org/10.1007/s004100050278.
      Cao, H. W., Huang, Y., Li, G. M., et al., 2018. Late Triassic Sedimentary Records in the Northern Tethyan Himalaya:Tectonic Link with Greater India. Geoscience Frontiers, 9(1):273-291. https://doi.org/10.1016/j.gsf.2017.04.001
      Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered Ca. 113Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2):449-463. https://doi.org/10.1016/j.gr.2013.06.005
      DePaolo, D.J., Wasserburg, G.J., 1976. Nd Isotopic Variations and Petrogenetic Models. Geophysical Research Letters, 3:249-252. https://doi.org/10.1029/GL003i005p00249
      Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4):635-651. https://doi.org/10.1007/s11430-016-5244-x
      Dong, X., Zhang, Z. M., Xiang, H., et al., 2013. Metamorphism and Dynamics of the Lhasa Terrane, South Tibet. Acta Geoscientia Sinica, 34(3):257-262 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201903007
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. 10.1016/S0016-7037(99)00343-9. doi: 10.1016/S0016-7037(99)00343-9
      Griffin, W. L., Wang, X., Jackson, S. E., P et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4):237-269. https://doi.org/10.1016/S0024-4937(02)00082-8.
      Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
      Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015. A Genetic Linkage between Subduction- And Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3):247-250. https://doi.org/10.1130/g36362.1
      Huang, F., Xu, J. F., Chen, J. L., et al., 2015. Early Jurassic Volcanic Rocks from the Yeba Formation and Sangri Group:Products of Continental Marginal Arc and Intra-Oceanic Arc during the Subduction of Neo-Tethys Ocean?. Acta Petrologica Sinica, 31(7):2089-2100 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507022
      Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8):917-933. https://doi.org/10.1130/b26033.1
      Lassiter, J. C., Depaolo, D. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Onstraints. In: Mahoney, J. J., Coffin, M.F. eds., Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. Geophysical Monograph Series, 100: 335-355. https://doi.org/10.1029/GM100p0335
      Le Maitre, R.W., 2002. Igneous Rocks:A Classification and Glossary of Terms (Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks):Second Edition. Cambridge University Press, New York, 3-42.
      Li, F. Q., Liu, W., Zhang, S. Z., et al., 2012. Chronology and Geochemical Characteristics of Yawa Mafic Complex in the Dajiacuo Area, Southern Gangdese. Acta Geologica Sinica, 86(10):1592-1603 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201210004
      Li, Z. Y., Ding, L., Lippert, P. C., et al., 2016. Paleomagnetic Constraints on the Mesozoic Drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia. Geology, 44(9):727-730. https://doi.org/10.1130/g38030.1
      Liu, H., Li, G. M, Huang, H. X., et al., 2019a. Sources of Ore-Forming Materials in Luerma Porphyry Copper (Gold) Deposit, Western Gangdise. Mineral Deposits, 38(3):631-643 (in Chinese with English abstract).
      Liu, H., Zhang, L. K.. Huang, H. X., et al., 2019b. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper Deposit from the Western Gangdise. Earth Science, 44(6):1935-1956 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.370
      Liu, H., Li, G. M., Huang, H. X., et al., 2018. Petrogenesis of Late Cretaceous Jiangla'angzong Ⅰ-Type Granite in Central Lhasa Terrane, Tibet, China:Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes. Acta Geologica Sinica (English Edition), 92(4):1396-1414. https://doi.org/10.1111/1755-6724.13634
      Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2):265-282. https://doi.org/10.1007/s12583-016-0925-8
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Meng, Y. K., Dong, H. W., Cong, Y., et al., 2016. The Early-Stage Evolution of the Neo-Tethys Ocean:Evidence from Granitoids in the Middle Gangdese Batholith, Southern Tibet. Journal of Geodynamics, 94-95:34-49. https://doi.org/10.1016/j.jog.2016.01.003
      Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks. Longman, London.
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      Song, S. W., Liu, Z., Zhu, D. C., et al., 2014. Zircon U-Pb Chronology and Hf Isotope of the Late Triassic Andesitic Magmatism in Dajiacuo, Tibet. Acta Petrologica Sinica, 30(10):3100-3112 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410023
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2):241. https://doi.org/10.1029/95rg00262
      Thompson, A. B., 1996. Fertility of Crustal Rocks during Anatexis. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2):1-10. https://doi.org/10.1017/s0263593300006428
      Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Post-Collisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181:122-143. https://doi.org/10.1016/j.earscirev.2018.02.019
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Wilson, W., 1989. Igneous Petrogenesis. Unwin Hyman, London.
      Wu, Y. W., Li, C., Xu, M. J., et al., 2017. Zircon U-Pb Age, Geochemical Data:Constraints on the Origin and Tectonic Evolution of the Metamafic Rocks from Longmuco-Shuanghu-Lancang Suture Zone, Tibet. Journal of Earth Science, 28(3):422-432. https://doi.org/10.1007/s12583-017-0730-z
      Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1-4):9-27. https://doi.org/10.1016/j.tecto.2004.07.028
      Xu, Z. Q., Dilek, Y., Cao, H., et al., 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105:320-337. https://doi.org/10.1016/j.jseaes.2015.01.021
      Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1):76-89. https://doi.org/10.1016/j.jseaes.2008.04.001
      Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1):1-131. https://doi.org/10.1016/j.earscirev.2005.05.004.
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zhang, S. Q., Mahoney, J. J., Mo, X. X., et al., 2005. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics. Journal of Petrology, 46(4):829-858. https://doi.org/10.1093/petrology/egi002
      Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1):170-189. https://doi.org/10.1016/j.gr.2012.08.024
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      董昕, 张泽明, 向华, 等, 2013.青藏高原南部拉萨地体的变质作用与动力学.地球学报, 34(3):257-262. http://d.old.wanfangdata.com.cn/Periodical/dqxb201303001
      黄丰, 许继峰, 陈建林, 等, 2015.早株罗世叶己组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?.岩石学报, 31(7):2089-2100.
      李奋其, 刘伟, 张士贞, 等, 2012.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征.地质学报, 86(10):1592-1603. doi: 10.3969/j.issn.0001-5717.2012.10.004
      刘洪, 李光明, 黄瀚霄, 等, 2019a.冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿床的成矿物质来源研究.矿床地质, 38(3):631-643. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201903012
      刘洪, 张林奎, 黄瀚霄, 等, 2019b.冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化.地球科学, 44(6):1935-1956. http://earth-science.net/WebPage/Article.aspx?id=4248
      宋绍玮, 刘泽, 朱弟成, 等, 2014.西藏打加错晚三叠世岩浆活动的锆石U-Pb年代学和Hf同位素.岩石学报, 30(10):3100-3112. http://d.old.wanfangdata.com.cn/Conference/8472890
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (6608) PDF downloads(74) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return