Citation: | Liu Jianhua, Cao Shuyun, Zhou Dingkui, Li Junyu, Cheng Xuemei, 2019. Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone. Earth Science, 44(5): 1716-1733. doi: 10.3799/dqkx.2019.053 |
Aleksandrov, K.S., Ryzhova, T.V., 1961.The Elastic Properties of Rock Forming Minerals, Pyroxenes and Amphiboles.Bull.Acad.Sci.USSR Geophys.Ser., 871-875:1339-1344.
|
Allison, I., La Tour, T.E., 1977.Brittle Deformation of Hornblende in a Mylonite:A Direct Geometrical Analogue of Ductile Deformation by Translation Gliding.Canadian Journal of Earth Sciences, 14(8):1953-1958. https://doi.org/10.1139/e77-166
|
Babaie, H.A., La Tour, T.E., 1994.Semibrittle and Cataclastic Deformation of Hornblende-Quartz Rocks in a Ductile Shear Zone.Tectonophysics, 229(1-2):19-30. https://doi.org/10.1016/0040-1951(94)90003-5
|
Baker, D.W., Carter, N.L., 1972.Seismic Velocity Anisotropy Calculated for Ultramafic Minerals and Aggregates, in Flow and Fracture of Rocks, Geophysics.Monogr.Ser., 16:157-166.
|
Bestmann, M., Prior, D.J., 2003.Intragranular Dynamic Recrystallization in Naturally Deformed Calcite Marble:Diffusion Accommodated Grain Boundary Sliding as a Result of Subgrain Rotation Recrystallization.Journal of Structural Geology, 25(10):1597-1613. https://doi.org/10.1016/s0191-8141(03)00006-3
|
Biermann, C., van Roermund, H.L.M., 1983.Defect Structures in Naturally Deformed Clinoamphiboles-A TEM Study.Tectonophysics, 95(3-4):267-278. https://doi.org/10.1016/0040-1951(83)90072-0
|
Birch, F., 1960.The Velocity of Compressional Waves in Rocks to 10 Kilobars:1.Journal of Geophysical Research, 65(4):1083-1102. https://doi.org/10.1029/jz065i004p01083
|
Brodie, K.H., Rutter, E., 1985.On the Relationship between Deformation and Metamorphism with Special Reference to the Behavior of Basic Rocks.In: Thompson, A.B., Rubie, D.C., eds., Advances in Physical Geochemistry.Springer, Berlin, 138-179.
|
Burlini, L., Fountain, D.M., 1993.Seismic Anisotropy of Metapelites from the Ivrea-Verbano Zone and Serie Dei Laghi (Northern Italy).Physics of the Earth and Planetary Interiors, 78(3-4):301-317. https://doi.org/10.1016/0031-9201(93)90162-3
|
Cai, Z.R., Xiang, J.Y., Huang, Q.T., et al., 2018.The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance.Earth Science, 43(5):1524-1531(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805013
|
Cao, S.Y., Liu, J.L., 2006.Modern Techniques for the Analysis of Rock Microstructure:EBSD and Its Application.Advances in Earth Science, 21(10):1091-1096(in Chinese with English abstract).
|
Cao, S.Y., Liu, J.L., Hu, L., 2007.Micro-and Submicrostructural Evidence for High Temperature Brittle-Ductile Transition Deformation of Hornblende:Case Study of High-Grade Mylonites from Diancangshan, Western Yunnan.Science in China (Series D:Earth Sciences), 37(8):1004-1013(in Chinese).
|
Cao, S.Y., Liu, J.L., Leiss, B., 2010a.Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan, SW Yunnan, China.Journal of Structural Geology, 32(5):606-622. doi: 10.1016/j.jsg.2010.03.012
|
Cao, S.Y., Liu, J.L., Leiss, B., et al., 2010b.New Zircon U-Pb Geochronology of the Post-Kinematic Granitic Plutons in the Diancang Shan Metamorphic Massif along the Ailao Shan-Red River Shear Zone and Its Geological Implications.Acta Geologica Sinica (English Edition), 84(6):1474-1487. https://doi.org/10.1111/j.1755-6724.2010.00342.x
|
Cao, S.Y., Liu, J.L., Leiss, B., et al., 2011a.Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone:Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif, SE Tibet, China.Gondwana Research, 19(4):975-993. https://doi.org/10.1016/j.gr.2010.10.006
|
Cao, S.Y., Neubauer, F., Liu, J.L., et al., 2011b.Exhumation of the Diancang Shan Metamorphic Complex along the Ailao Shan-Red River Belt, Southwestern Yunnan, China:Evidence from 40Ar/39Ar Thermochronology.Journal of Asian Earth Sciences, 42(3):525-550. https://doi.org/10.1016/j.jseaes.2011.04.017
|
Cheng, X.M., Cao, S.Y., Li, J.Y., et al., 2018.Metamorphic, Deformation, Fluids and Geological Significance of Low-Temperature Retrograde Mylonites of Diancangshan Metamorphic Massif along Ailaoshan-Red River Strike-Slip Fault Zone, Yunnan, China.Science China Earth Sciences, 61(8):1023-1041. https://doi.org/10.1007/s11430-017-9194-4
|
Christensen, N.I., Mooney, W.D., 1995.Seismic Velocity Structure and Composition of the Continental Crust:A Global View.Journal of Geophysical Research (Solid Earth), 100(B6):9761-9788. https://doi.org/10.1029/95jb00259
|
Crampin, S., Gao, Y., Bukits, J., 2015.A Review of Retrospective Stress-Forecasts of Earthquakes and Eruptions.Physics of the Earth and Planetary Interiors, 245:76-87. https://doi.org/10.1016/j.pepi.2015.05.008
|
Dempsey, E.D., Prior, D.J., Mariani, E., et al., 2011.Mica-Controlled Anisotropy within Mid-to-Upper Crustal Mylonites:An EBSD Study of Mica Fabrics in the Alpine Fault Zone, New Zealand.Geological Society, London, Special Publications, 360(1):33-47. https://doi.org/10.1144/sp360.3
|
Díaz Aspiroz, M., Lloyd, G.E., Fernández, C., 2007.Development of Lattice Preferred Orientation in Clinoamphiboles Deformed under Low-Pressure Metamorphic Conditions:A SEM/EBSD Study of Metabasites from the Aracena Metamorphic Belt (SW Spain).Journal of Structural Geology, 29(4):629-645. https://doi.org/10.1016/j.jsg.2006.10.010
|
Endrun, B., Lebedev, S., Meier, T., et al., 2011.Complex Layered Deformation within the Aegean Crust and Mantle Revealed by Seismic Anisotropy.Nature Geoscience, 4:203-207. https://doi.org/10.1038/ngeo1065
|
Fliervoet, T.F., Drury, M.R., Choprac, P.N., 1999.Crystallographic Preferred Orientations and Misorientations in Some Olivine Rocks Deformed by Diffusion or Dislocation Creep.Tectonophysics, 303(1-4):1-27. https://doi.org/10.1016/s0040-1951(98)00250-9
|
Fliervoet, T.F., White, S.H., Drury, M.R., 1997.Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist-and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia.Journal of Structural Geology, 19(12):1495-1520. https://doi.org/10.1016/s0191-8141(97)00076-x
|
Getsinger, A.J., Hirth, G., 2014.Amphibole Fabric Formation during Diffusion Creep and the Rheology of Shear Zones.Geology, 42(6):535-538. https://doi.org/10.1130/g35327.1
|
Gilley, L.D., Harrison, T.M., Leloup, P.H., et al., 2003.Direct Dating of Left-Lateral Deformation along the Red River Shear Zone, China and Vietnam.Journal of Geophysical Research (Solid Earth), 108(B2):108. https://doi.org/10.1029/2001jb001726
|
Gong, W., Jiang, X.D., 2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005
|
Guo, X.F., Wang, Y.J., Liu, H.C., et al., 2016.Zircon U-Pb Geochronology of the Cenozoic Granitic Mylonite along the Ailaoshan-Red River Shear Zone:New Constraints on the Timing of the Sinistral Shearing.Journal of Earth Science, 27(3):435-443. doi: 10.1007/s12583-016-0678-2
|
Imon, R., Okudaira, T., Kanagawa, K., 2004.Development of Shape-and Lattice-Preferred Orientations of Amphibole Grains during Initial Cataclastic Deformation and Subsequent Deformation by Dissolution-Precipitation Creep in Amphibolites from the Ryoke Metamorphic Belt, SW Japan.Journal of Structural Geology, 26(5):793-805. https://doi.org/10.1016/j.jsg.2003.09.004
|
Ji, S.C., Mainprice, D., 1988.Natural Deformation Fabrics of Plagioclase:Implications for Slip Systems and Seismic Anisotropy.Tectonophysics, 147(1-2):145-163. https://doi.org/10.1016/0040-1951(88)90153-9
|
Ji, S.C., Shao, T.B., Michibayashi, K., et al., 2013.A New Calibration of Seismic Velocities, Anisotropy, Fabrics, and Elastic Moduli of Amphibole-Rich Rocks.Journal of Geophysical Research (Solid Earth), 118(9):4699-4728. https://doi.org/10.1002/jgrb.50352
|
Ji, S.C., Shao, T.B., Michibayashi, K., et al., 2015.Magnitudeand Symmetry of Seismic Anisotropy in Mica-and Amphibole-Bearing Metamorphic Rocks and Implications for Tectonic Interpretation of Seismic Data from the Southeast Tibetan Plateau.Journal of Geophysical Research (Solid Earth), 120(9):6404-6430. https://doi.org/10.1002/2015jb012209
|
Jiang, Z.T., Prior, D.J., Wheeler, J., 2000.Albite Crystallographic Preferred Orientation and Grain Misorientation Distribution in a Low-Grade Mylonite:Implications for Granular Flow.Journal of Structural Geology, 22(11-12):1663-1674. https://doi.org/10.1016/s0191-8141(00)00079-1
|
Jin, Z.M., Ji, S.C., Jin, S.Y., 1994.Lattice Preferred Orientation of Olivines and Seismic Anisotropy in the Upper Mantle.Acta Geophysica Sinica, 37(4):469-477(in Chinese with English abstract).
|
Jung, H., Park, M., Jung, S., et al., 2010.Lattice Preferred Orientation, Water Content, and Seismic Anisotropy of Orthopyroxene.Journal of Earth Science, 21(5):555-568. https://doi.org/10.1007/s12583-010-0118-9
|
Kang, H., Jung, H., 2019.Lattice-Preferred Orientation of Amphibole, Chlorite, and Olivine Found in Hydrated Mantle Peridotites from Bjørkedalen, Southwestern Norway, and Implications for Seismic Anisotropy.Tectonophysics, 750:137-152. https://doi.org/10.1016/j.tecto.2018.11.011
|
Kern, H., Wenk, H.R., 1990.Fabric-Related Velocity Anisotropy and Shear-Wave Splitting in Rocks from the Santa Rosa Mylonite Zone, California.Journal of Geophysical Research, 95:11213-11224. doi: 10.1029/JB095iB07p11213
|
Kitamura, K., 2006.Constraint of Lattice-Preferred Orientation (LPO) on Vp Anisotropy of Amphibole-Rich Rocks.Geophysical Journal International, 165(3):1058-1065. https://doi.org/10.1111/j.1365-246x.2006.02961.x
|
Ko, B., Jung, H., 2015.Crystal Preferred Orientation of an Amphibole Experimentally Deformed by Simple Shear.Nature Communications, 6:6586. https://doi.org/10.1038/ncomms7586
|
Kruse, R., Stünitz, H., 1999.Deformation Mechanisms and Phase Distribution in Mafic High-Temperature Mylonites from the Jotun Nappe, Southern Norway.Tectonophysics, 303(1-4):223-249. https://doi.org/10.1016/s0040-1951(98)00255-8
|
Leloup, P.H., Arnaud, N., Lacassin, R., et al., 2001.New Constraints on the Structure, Thermochronology, and Timing of the Ailao Shan-Red River Shear Zone, SE Asia.Journal of Geophysical Research (Solid Earth), 106(B4):6683-6732. https://doi.org/10.1029/2000jb900322
|
Leloup, P.H., Kienast, J.R., 1993.High-Temperature Metamorphism in a Major Strike-Slip Shear Zone:The Ailao Shan-Red River, People's Republic of China.Earth and Planetary Science Letters, 118(1-4):213-234.https://doi.org/10.1016/0012-821x (93)90169-a doi: 10.1016/0012-821x(93)90169-a
|
Leloup, P.H., Lacassin, R., Tapponnier, P., et al., 1995.The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina.Tectonophysics, 251(1-4):3-10, 13-84. https://doi.org/10.1016/0040-1951(95)00070-4
|
Licciardi, A., Eken, T., Taymaz, T., et al., 2018.Seismic Anisotropy in Central North Anatolian Fault Zone and Its Implications on Crustal Deformation.Physics of the Earth and Planetary Interiors, 277:99-112. https://doi.org/10.1016/j.pepi.2018.01.012
|
Liu, J.L., Cao, S.Y., Zhai, Y.F., et al., 2007.Rotation of Crustal Blocks as an Explanation of Oligo-Miocene Extension in Southeastern Tibet-Evidenced by the Diancangshan and nearby Metamorphic Core Complexes.Earth Science Frontiers, 14(4):40-48. https://doi.org/10.1016/s1872-5791(07)60028-1
|
Lloyd, G.E., Butler, R.W.H., Casey, M.et al., 2009.Mica, Deformation Fabrics and the Seismic Properties of the Continental Crust.Earth Planet.Sci.Lett, 288:320-328. doi: 10.1016/j.epsl.2009.09.035
|
Lloyd, G.E., Butler, R.W.H., Casey, M., et al., 2011.Constraints on the Seismic Properties of the Middle and Lower Continental Crust.Geological Society, London, Special Publications, 360(1):7-32. doi: 10.1144/SP360.2
|
Lloyd, G.E., Farmer, A.B., Mainprice, D., 1997.Misorientation Analysis and the Formation and Orientation of Subgrain and Grain Boundaries.Tectonophysics, 279(1-4):55-78. https://doi.org/10.1016/s0040-1951(97)00115-7
|
Mahan, K., 2006.Retrograde Mica in Deep Crustal Granulites:Implications for Crustal Seismic Anisotropy.Geophysical Research Letters, 33(24):L24301. https://doi.org/10.1029/2006gl028130
|
Mainprice, D., 1990.A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals.Computers & Geosciences, 16(3):385-393. https://doi.org/10.1016/0098-3004(90)90072-2
|
Mainprice, D., Nicolas, A., 1989.Development of Shape and Lattice Preferred Orientations:Application to the Seismic Anisotropy of the Lower Crust.Journal of Structural Geology, 11(1-2):175-189. https://doi.org/10.1016/0191-8141(89)90042-4
|
Mehl, L., Hirth, G., 2008.Plagioclase Preferred Orientation in Layered Mylonites:Evaluation of Flow Laws for the Lower Crust.Journal of Geophysical Research, 113(B5):1-19. https://doi.org/10.1029/2007jb005075
|
Melosha, B.L., Rowe, C.D., Gerbi, C., et al., 2018.Seismic Cycle Feedbacks in a Mid-Crustal Shear Zone.Journal of Structural Geology, 112:95-111. https://doi.org/10.1016/j.jsg.2018.04.004
|
McNamara, D.D., Wheeler, J., Pearce, M., et al., 2012.Fabrics Produced Mimetically during Static Metamorphism in Retrogressed Eclogites from the Zermatt-Saas Zone, Western Italian Alps.Journal of Structural Geology, 44:167-178. https://doi.org/10.1016/j.jsg.2012.08.006
|
Nyman, M.W., Law, R.D., Smelik, E.A., 1992.Cataclastic Deformation Mechanism for the Development of Core-Mantle Structures in Amphibole.Geology, 20(5):455.https://doi.org/10.1130/0091-7613(1992)020<0455:cdmftd>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0455:cdmftd>2.3.co;2
|
Peltzer, G., Tapponnier, P., 1988.Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision:An Experimental Approach.Journal of Geophysical Research (Solid Earth), 93(B12):15085-15117. https://doi.org/10.1029/jb093ib12p15085
|
Pennock, G.M., Drury, M.R., Peach, C.J., et al., 2006.The Influence of Water on Deformation Microstructures and Textures in Synthetic NaCl Measured Using EBSD.Journal of Structural Geology, 28(4):588-601. https://doi.org/10.1016/j.jsg.2006.01.014
|
Rasolofosaon, P.N.J., Rabbel, W., Siegesmund, S., et al., 2000.Characterization of Crack Distribution:Fabric Analysis versus Ultrasonic Inversion.Geophysical Journal International, 141(2):413-424. https://doi.org/10.1046/j.1365-246x.2000.00093.x
|
Rudnick, R., Gao, S., 2003.Composition of the Continental Crust.Treatise Geochem., 3:1-64. doi: 10.1016-0016-7037(95)00038-2/
|
Shapiro, N.M., Ritzwoller, M.H., Molnar, P., et al., 2004.Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy.Science, 305(5681):233-236. https://doi.org/10.1126/science.1098276
|
Sherrington, H.F., Zandt, G., Frederiksen, A., 2004.Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters.Journal of Geophysical Research (Solid Earth), 109(B2):376. https://doi.org/10.1029/2002jb002345
|
Skemer, P., Karato, S.I., 2008.Sheared Lherzolite Xenoliths Revisited.Journal of Geophysical Research, 113(B7):1-14. https://doi.org/10.1029/2007jb005286
|
Skrotzki, W., 1992.Defect Structure and Deformation Mechanisms in Naturally Deformed Hornblende.Physica Status Solidi (a), 131(2):605-624. https://doi.org/10.1002/pssa.2211310232
|
Stünitz, H., Gerald, J.D.F., 1993.Deformation of Granitoids at Low Metamorphic Grade.Ⅱ:Granular Flow in Albite-Rich Mylonites.Tectonophysics, 221(3-4):299-324. https://doi.org/10.1016/0040-1951(93)90164-f
|
Sun, S.S., Ji, S.C., 2011.On the Formation of Seismic Anisotropy and Shear Wave Splitting in Oceanic Subduction Zones.Geotectonica et Metallogenia, 35(4):628-647(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201104017
|
Tapponnier, P., Lacassin, R., Leloup, P.H., et al., 1990.The Ailao Shan/Red River Metamorphic Belt:Tertiary Left-Lateral Shear between Indochina and South China.Nature, 343:431-437. https://doi.org/10.1038/343431a0
|
Tatham, D.J., Lloyd, G.E., Butler, R.W.H., et al., 2008.Amphibole and Lower Crustal Seismic Properties.Earth and Planetary Science Letters, 267(1-2):118-128. https://doi.org/10.1016/j.epsl.2007.11.042
|
Warren, J.M., Hirth, G., 2006.Grain Size Sensitive Deformation Mechanisms in Naturally Deformed Peridotites.Earth and Planetary Science Letters, 248(1-2):438-450. https://doi.org/10.1016/j.epsl.2006.06.006
|
Wheeler, J., Prior, D., Jiang, Z., et al., 2001.The Petrological Significance of Misorientations between Grains.Contributions to Mineralogy and Petrology, 141(1):109-124. https://doi.org/10.1007/s004100000225
|
Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225(in Chinese with English abstract).
|
Zhang, J.F., Wang, Y.F., Jin, Z.M., 2007.Seismic Anisotropy of Ultrahigh Pressure Eclogite Induced by Deformation Fabric.Science in China (Series D:Earth Sciences), 37(11):1433-1443(in Chinese).
|
蔡周荣, 向俊洋, 黄强太, 等, 2018.红河断裂韧性剪切带内纳米颗粒的形态及其构造意义.地球科学, 43(5):1524-1531. http://earth-science.net/WebPage/Article.aspx?id=3812
|
曹淑云, 刘俊来, 2006.岩石显微构造分析现代技术——EBSD技术及应用.地球科学进展, 21(10):1091-1096. doi: 10.3321/j.issn:1001-8166.2006.10.014
|
曹淑云, 刘俊来, 胡玲, 2007.角闪石高温脆-韧性转变变形的显微与亚微构造证据——以滇西点苍山深变质剪切糜棱岩为例.中国科学(D辑:地球科学), 37(8):1004-1013.
|
宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):223-239.
|
金振民, Ji, S.C., 金淑燕, 1994.橄榄石晶格优选方位和上地幔地震波速各向异性.地球物理学报, 37(4):469-477. doi: 10.3321/j.issn:0001-5733.1994.04.007
|
孙圣思, 嵇少丞, 2011.大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制.大地构造与成矿学, 35(4):628-647. doi: 10.3969/j.issn.1001-1552.2011.04.017
|
徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2):213-225. doi: 10.3969/j.issn.1000-8527.2007.02.005
|
章军锋, 王永锋, 金振民, 2007.变形组构引起的超高压榴辉岩地震波速各向异性.中国科学(D辑:地球科学), 37(11):1433-1443. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200711002
|