• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 2
    Feb.  2020
    Turn off MathJax
    Article Contents
    Wu Yong, Qin Mingkuan, Guo Dongfa, Cai Yuqi, Wang Fengang, Wu Yu, Guo Guolin, Liu Zhangyue, 2020. Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance. Earth Science, 45(2): 419-433. doi: 10.3799/dqkx.2019.058
    Citation: Wu Yong, Qin Mingkuan, Guo Dongfa, Cai Yuqi, Wang Fengang, Wu Yu, Guo Guolin, Liu Zhangyue, 2020. Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance. Earth Science, 45(2): 419-433. doi: 10.3799/dqkx.2019.058

    Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance

    doi: 10.3799/dqkx.2019.058
    • Received Date: 2019-10-05
    • Publish Date: 2020-02-15
    • The 1101 uranium ore area is one of the representative uranium deposits, which has high-grade and larger uraninite. In order to know the genesis and metallogenic age of the pitchblende, the in-situ analytical technologies(EPMA、SEM、LA-ICP-MS) was applied to analyze the three pitchblende samples.The chemical composition of EPMA indicate that pitchblende exhibits high contents of PbO, ThO2, Y2O3 and low SiO2, Na2O, CaO, K2O, ZrO2, which shows that it has suffered less alteration after crystallization.The REE diagram of(ΣREE-(U/Th), ΣREE-(ΣREE/ΣREE)N)reflects that these pitchblend crystalized in the condition of magamatic process, related to a high temperature environment(T>450℃).The LA-ICP-MS of pitchblende U-Pb dating yields the age of (950±5 Ma, MSWD=0.025, 953±9 Ma, MSWD=0.051, 954±8 Ma, MSWD=0.085), providing the metallogenic age constraint on the 1101 uranium ore area(Late-Neoproterozoic).Compared with different types of uranium deposits abroad, the 1101 uranium ore was of magamatic origin that had undergone the process of migmatization.The Rondinia super continent was in the transition from convergence to split at the period of Late-Neoproterozoic, which led to the Pt1j strata generated regional metamorphism, migmatization and uranium mineralization.The metallogenic age ca.960 Ma of 1101 uranium deposit corresponds to the Jinningian tectonic movement, which belongs to the Rondinia supercontinenal spilitting geological event.

       

    • loading
    • Alexandre, P., Kyser, K., Layton-Matthews, D., et al., 2015. Chemical Compositions of Natural Uraninite. The Canadian Mineralogist, 53(4): 595-622. https://doi.org/10.3749/canmin.1500017
      Cantrell, K. J., Byrne, R. H., 1987. Rare Earth Element Complexation by Carbonate and Oxalate Ions. Geochimica et Cosmochimica Acta, 51(3): 597-605. https://doi.org/10.1016/0016-7037(87)90072-x
      Chang, D., Chen, Y.L., Yuan, W., et al. 2015. Study on Trace Element Characteristics of Migmatisation Uranoum Ore in Haita Area of Miyi County, Sichuan. Acta Mineralogical Sinica, (S1): 272-273(in Chinese).
      Chen, H.S., Ran, C.Y., 1993.Isotope Geochemistry of Copper Deposits in Kangdian Axis.Geology Press, Beijing(in Chinese).
      Cheng, Y.L., 1992. A Preliminary Study of Uranium Mineralization Epochs on the Kanddian Axis. Acta Geological Sichuan. 12(1): 42-46(in Chinese with English abstract).
      Cheng.Y.Q., 1987. On Migmatites and Migmatization-Half a Century's Recollection of Certain Related Problems. Bulletin of The Chinese Academy of Geological Sciences. 16: 5-19(in Chinese with English abstract)
      Chipley, D., Polito, P. A., Kyser, T. K., 2007. Measurement of U-Pb Ages of Uraninite and Davidite by Laser Ablation-HR-ICP-MS. American Mineralogist, 92(11/12): 1925-1935. https://doi.org/10.2138/am.2007.2226
      Cuney, M., Emetz, A., Mercadier, J., et al., 2012. Uranium Deposits Associated with Na-Metasomatism from Central Ukraine: A Review of some of the Major Deposits and Genetic Constraints. Ore Geology Reviews, 44: 82-106. https://doi.org/10.1016/j.oregeorev.2011.09.007
      Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Economic Geology, 105(3): 553-569. https://doi.org/10.2113/gsecongeo.105.3.553
      Eglinger, A., André-Mayer, A. S., Vanderhaeghe, O., et al., 2013. Geochemical Signatures of Uranium Oxides in the Lufilian Belt: From Unconformity-Related to Syn-Metamorphic Uranium Deposits during the Pan-African Orogenic Cycle. Ore Geology Reviews, 54: 197-213. https://doi.org/10.1016/j.oregeorev.2013.04.003
      Evron, R., Kimmel, G., Eyal, Y., 1994. Thermal Recovery of Self-Radiation Damage in Uraninite and Thorianite. Journal of Nuclear Materials, 217(1/2): 54-66. https://doi.org/10.1016/0022-3115(94)90304-2
      Forster, H. J., 1999. The Chemical Composition of Uraninite in Variscan Granites of the Erzgebirge, Germany. Mineralogical Magazine, 63(2): 239-252. https://doi.org/10.1180/002646199548466
      Frimmel, H. E., Schedel, S., 2014. Uraninite Chemistry as Forensic Tool for Provenance Analysis. Applied Geochemistry, 48: 104-121. https://doi.org/10.1016/j.apgeochem.2014.07.013
      Fryer, B. J., Taylor, R. P., 1987. Rare-Earth Element Distributions in Uraninites: Implications for Ore Genesis. Chemical Geology, 63(1/2): 101-108. https://doi.org/10.1016/0009-2541(87)90077-5
      Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. http://cn.bing.com/academic/profile?id=b0492b09ac7555f460b3d5fffe9e5be2&encoded=0&v=paper_preview&mkt=zh-cn
      Huang, G.L., Yin, Z.P., Ling, H.F., et al., 2010. Formation Age, Geochemical Characteristics and Genesis of Pitchblende from NO.302 Uranium Deposit in Northern Guangdong. Mineral Deposits, 29(2): 352-360(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201002017
      Janeczek, J., Ewing, R. C., 1992. Structural Formula of Uraninite. Journal of Nuclear Materials, 190: 128-132. https://doi.org/10.1016/0022-3115(92)90082-v
      Lai, S.C., Zhu, R.Z., 2017. Geochemical Characteristics and Its Continental Dynamic Implication of Neproterozoic Volcanic Rocks in Luding Areas of Sichuan, China. Journal of Earth Sciences and Environment, 39(4):460-475(in Chinese with English abstract).
      Li, X.H., Zhou, H.W., Li, Z.X., et al., 2001. Zircon U-Pb Age and Petrochemical Characteristics of the Neoproterozoic Bimodal Volcanic from Western Yangtze Block. Geochemical, 30(4):315-322(in Chinese with English abstract).
      Li, Z.H., Luo, Z.H., Chen, Y.L., et al., 2008. Geology and Geochemistry of the Kangding-Luding Metamorphosed Intrusions and Implication for Tectonic Setting. Geoscience, 22(2):181-189(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200802005
      Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1/2/3/4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. in Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, J.Y., Zhang, C.J., 2007. Metallization System of Panxi Area. Geology Press, Beijing(in Chinese with English abstract).
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39.
      Luo, Y.Y., 1990. A Preliminary Discussion on the Environment of Uranium Metallogeniesis in Kangdian Axis. Uranium Geology, (4): 226-231(in Chinese with English abstract).
      Luo, Y.Y., Wei, M.J., Ma, G.Z., et al., 1998. Preliminary Analysis on Tectonic Movement and Uranium Metallogeny in Kangdian the Earth's Axis.Uranium Geology, 2: 72-81(in Chinese with English abstract).
      McLennan, S. M., Taylor, S. R., 1979. Rare Earth Element Mobility Associated with Uranium Mineralisation. Nature, 282(5736): 247-250. https://doi.org/10.1038/282247a0
      Mercadier, J., Cuney, M., Lach, P., et al., 2011. Origin of Uranium Deposits Revealed by their Rare Earth Element Signature. Terra Nova, 23(4): 264-269. https://doi.org/10.1111/j.1365-3121.2011.01008.x
      Michard, A., Beaucaire, C., Michard, G., 1987. Uranium and Rare Earth Elements in CO2-Rich Waters from Vals-Les-Bains (France). Geochimica et Cosmochimica Acta, 51(4): 901-909. https://doi.org/10.1016/0016-7037(87)90103-7
      Pagel, M., Pinte, G., Rotach, T.N., et al., 1987. The Rare-Earth Element in Natural Uranium Oxides. Mineralium Deposita, 27:81-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/039219219103915505
      Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010
      Qian, F.R., 1996.Uranium Mineralization Types and Their Characteristics in Proterozoic of the Central-South Section of Kham-Dian(West Sichuan-Yunman) Axis. Uranium Geology.12(4): 214-219(in Chinese with English abstract).
      Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551
      Spano, T. L., Simonetti, A., Wheeler, T., et al., 2017. A Novel Nuclear Forensic Tool Involving Deposit Type Normalized Rare Earth Element Signatures. Terra Nova, 29(5): 294-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/ter.12275
      Teng,, J.W., 1994. Kangdian Physics and dynamics of the lithosphere tectonic belt.Science press: 264.(in Chinese)
      Wang, D.Y., Liu, F.Y., 1993. Geological Characteristics of Uranium Mineralization of Pre-Cambrian at The Southern Part of Xikang-Yunnan Axis. Geology of Yunnan. 12(1): 82-91(in Chinese with English abstract).
      Tang, A., Li, G.L., Su, Y., et al., 2017. EPMA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province. Earth Science.42(3):378-388(in Chinese with English abstract).
      Wang, F.G., Sun, Y., Yao, J., et al., 2017. Study on Characteristics of Gaint Grain Uraninite in Haita Area of Miyi County, Sichuan. World Nuclear Geoscience. 34(4): 187-193, 216 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201704001
      Wang, H.J., Li, J.C., Xue, J.Y., et al., 2009. Neoproterozoic Metallogenesis in Xikang-Yunnan Axis and Its Relationship to Rodinia Supercontinent. World Nuclear Geoscience.26(2): 81-86.
      Wang, Z.H., Deng, M., Cheng, J.X., et al., 2018. influence of Fault and Magmatism on Oil and Gas Preservation Condition, to the West of Kangdian Ancient Continent: Taking Yanyuan Basin as an Example. Earth Science, 43(10):3616-3624(in Chinese with English abstract).
      Xie, B., Wang, H.J., Zhao, J.B., 2015. Study on Metallogenic Environment of Mouding 1101 Area in the Middle of Kangdian Axis. Progress Report on China Nuclear Science and Techology, 4: 58-63(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9275546
      Xu, B., 2001. Recent Study of the Rodinia Supercontinent Evolution and Its Main Goal. Geological Science and Technology Information, 20(1):15-19(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200101003
      Xu, D.E., 1992.Discussion on the Crustal Evolution and Uranium Mineralization of the Xikang-Yunnan Axis. Uranium Geology. 8(6): 348-353(in Chinese with English abstract).
      Xu, Z.Q., Ouyang, X.D., Zhang, C.J., 2017. The Application and Significance of Electron Microprobe Dating on Datian Uraninite in Panzhihua. Rock and Mineral Analysis. 36(6):659-667 (in Chinese with English abstract).
      Xu, Z.Q., Zhang, C.J., Chen, Y.L., et al., 2015. Characteristics and Significance of Uranium Bearing Rock Fill in Panzhihua Field. Acta Mineralogica Sinica, (S1357(in Chinese with English abstract).
      Zhang, C.J., Chen, Y.L., Li, J.C., et al., 2015.The Discovery of Coase-Grained Uraninite in kangdian Axis and Its Geological Significance. Geological Bulletin of China, 2219-2226(in Chinese with English abstract).
      Zhang, L., Chen, Y.L., Chang, D., et al., 2015. Study on Trace Element Characteristics of Migmatisation Uranoum Ore in Haita Area of Miyi County, Sichuan. Acta Mineralogical Sinica, (S1): 365-366.(in Chinese)
      Zhao, J.X., Chen, Y.L., Li, Z.H., et al., 2006. Zircon U-Pb SHRIMP Dating for the Kangding Complex and Its Geological Significance. Geoscience, 20(3):378-385(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200603003
      Zhong, F.J., Pan, J.Y., Xia, F., et al.2017.Geochemical Characteristics of Rare Earth Elements in Mineralization Process in the Changjiang Uranium Ore Field, Northern Guidong, China. Journal of Mineralogy and Petrology, 2: 63-73(in Chinese with English abstract).
      Zong, K. Q., Chen, J. Y., Hu, Z. C., et al., 2015. In-Situ U-Pb Dating of Uraninite by Fs-LA-ICP-MS. Science China Earth Sciences, 58(10): 1731-1740(in Chinese with English abstract).
      Zou, D.F., Li, F.L., Zhang, S., et al., 2011.Timing of No.335 Ore Deposit in Xiazhuang Uranium Ore Field, Northern Guangdong Province : Evidence from LA-ICP-MS U-Pb Dating of Pitchblende. Mineral Deposits.30(05): 912-923(in Chinese with English abstract).
      常丹, 陈友良, 袁为, 等, 2015.四川米易海塔地区混合岩型铀矿微量元素地球化学特征.矿物学报, (S1): 272-273. http://d.old.wanfangdata.com.cn/Conference/9132824
      陈好寿, 冉崇英, 1993.康滇地轴铜矿床同位素地球化学.北京:地质出版社.
      陈友良, 1992.康滇地轴铀矿化时代初探.四川地质学报, 12(1): 42-46. http://www.cnki.com.cn/Article/CJFDTotal-SCDB199201005.htm
      程裕淇, 1987.有关混合岩和混合岩化作用的一些问题对半个世纪以来某些基本认识的回顾.中国地质科学院院报, 16: 5-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002491748
      黄国龙, 尹征平, 凌洪飞, 等, 2010.粤北地区302矿床沥青铀矿的形成时代、地球化学特征及其成因研究.矿床地质, 29(02): 352-360. http://d.old.wanfangdata.com.cn/Periodical/kcdz201002017
      解波, 王红军, 赵剑波, 等, 2015.探讨康滇地轴中段牟定1101地区铀成矿环境.中国核科学技术进展报告, 4: 58-63. http://d.old.wanfangdata.com.cn/Conference/9275546
      赖绍聪, 朱韧之, 2017.四川泸定地区新元古代火山岩地球化学特征及其大陆动力学意义, 地球科学与环境学报, 39(4):460-474. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201704001
      李献华, 周汉文, 李正详, 等, 2001.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化学, 30(4):315-322. http://d.old.wanfangdata.com.cn/Periodical/dqhx200104003
      李志红, 罗照华, 陈岳龙, 等, 2008.康定-泸定地区变质侵入岩的地质地球化学特征及其构造环境.现代地质, 22(2):181-189. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ200802005.htm
      刘家铎, 张成江, 2007.攀西地区金属成矿系统.北京:地质出版社.
      刘作谆, 1979.三O七五矿区混合岩化作用及其对铀的成矿意义.铀矿地质, 2:33-38 http://www.cnki.com.cn/Article/CJFDTotal-YKDZ197904003.htm
      罗一月, 魏明基, 马光中, 1998.浅析康滇地轴构造运动与铀成矿的关系.铀矿地质, 2: 72-81. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ199802001.htm
      罗一月, 1990.对"康滇地轴"轴成矿环境的初步探讨.铀矿地质, 4: 226-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y2580338
      钱法荣, 1996.康滇地轴中南段元古代地层中铀矿化类型及其特征.铀矿地质, 12(4): 214-219. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ604.003.htm
      唐傲, 李光来, 苏晔, 等, 2017.赣中紫云山花岗岩晶质铀矿的电子探针U-Th-Pb化学定年.地球科学, 42(3):378-388 doi: 10.3799/dqkx.2017.028
      滕吉文, 1994.康滇构造带岩石圈物理与动力学.北京: 科学出版社, 264.
      王鼎云, 刘凤祥, 1993.康滇地轴南段前寒武系铀成矿地质特征.云南地质, 12(1): 82-91. http://www.cnki.com.cn/Article/CJFDTotal-YNZD199301013.htm
      王凤岗, 孙悦, 姚建, 等, 2017.四川省米易县海塔地区石英脉中巨粒晶质铀矿特征研究.世界核地质科学, 34(4): 187-193. http://d.old.wanfangdata.com.cn/Periodical/sjhdzkx201704001
      王红军, 李巨初, 薛钧月, 2009.康滇地轴新元古代成矿作用与罗迪尼亚超大陆.世界核地质科学, 26(2): 81-86. http://d.old.wanfangdata.com.cn/Periodical/sjhdzkx200902004
      王正和, 邓敏, 程锦翔, 等, 2018.康滇古陆西侧断裂及岩浆活动对油气保存条件的影响:以盐源盆地为例.地球科学, 43(10):3616-3624. doi: 10.3799/dqkx.2018.225
      巫声扬, 刘兴源, 王德生, 等, 1992.康滇地轴中南段元古宙主要矿化特征及找矿方向.康滇地轴铀矿远景评价研讨会论文摘要汇编, 1992:53-55.
      徐备, 2001. Rodinia超大陆构造演化研究的新进展和主要目标.地质科技情报, 20(1):15-19 http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200101003
      胥德恩, 1992.康滇地轴地壳演化与铀成矿作用探讨.铀矿地质, 8(6): 348-353. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ199206003.htm
      徐争启, 欧阳鑫东, 张成江, 等, 2017.电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义.岩矿测试, 36(6):659-667 http://d.old.wanfangdata.com.cn/Periodical/ykcs201706012
      徐争启, 张成江, 陈友良, 等, 2015.攀枝花大田含铀滚石特征及其意义.矿物学报, (S1357. http://d.old.wanfangdata.com.cn/Conference/9132768
      张成江, 陈友良, 李巨初, 等, 2015.康滇地轴巨粒晶质铀矿的发现及其地质意义.地质通报, 2219-2226. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201512008
      张龙, 陈友良, 常丹, 等, 2015.四川米易海塔地区混合岩型铀矿稀土元素地球化学特征.矿物学报. (S1: 365-366. http://d.old.wanfangdata.com.cn/Conference/9132762
      赵俊香, 陈岳龙, 李志红, 等, 2006.康定杂岩SHRIMP U-Pb定年及其地质意义.现代地质, 20(3):378-385 http://d.old.wanfangdata.com.cn/Periodical/xddz200603003
      钟福军, 潘家永, 夏菲, 等, 2017.粤北长江铀矿田成矿过程中稀土元素地球化学特征.矿物岩石. 2: 63-73. http://d.old.wanfangdata.com.cn/Periodical/kwys201702007
      宗克清, 陈金勇, 胡兆初, 等, 2015.铀矿FS-LA-ICP-MS原位微区U-Pb定年.中国科学:地球科学, 45:1304-1315 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201509005
      邹东风, 李方林, 张爽, 等, 2010.粤北下庄335矿床成矿时代的厘定:来自LA-ICP-MS沥青铀矿U-Pb年龄的制约.矿床地质. 30 (5): 912-923. http://d.old.wanfangdata.com.cn/Periodical/kcdz201105012
    • dqkx-45-2-419-Table1-7.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (4573) PDF downloads(84) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return