• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Xu Peiyan, Zheng Yuanchuan, Yang Zhusen, Shen Yang, Wang Zixuan, Ma Rui, Wu Changda, 2019. Sources of Ore-Forming Fluids and Materials of Jiagangxueshan W-Mo Deposit. Earth Science, 44(6): 1974-1986. doi: 10.3799/dqkx.2019.066
    Citation: Xu Peiyan, Zheng Yuanchuan, Yang Zhusen, Shen Yang, Wang Zixuan, Ma Rui, Wu Changda, 2019. Sources of Ore-Forming Fluids and Materials of Jiagangxueshan W-Mo Deposit. Earth Science, 44(6): 1974-1986. doi: 10.3799/dqkx.2019.066

    Sources of Ore-Forming Fluids and Materials of Jiagangxueshan W-Mo Deposit

    doi: 10.3799/dqkx.2019.066
    • Received Date: 2018-10-23
    • Publish Date: 2019-06-15
    • Jiagangxueshan W-Mo deposit, Shenzha County, is the first greisen-type W deposit in Tibet. Studying the deposit is of great significance in the regional metallogenic mechanism and prospecting. The mineralization is strongly linked with the monzogranite located in the center of the deposit, and ores usually occur in inner monzogranite or sedimentary wall rocks that are adjacent to the monzogranite. The orebody types of the deposit contain greisen-type and quartz vein-type. The majority of ores distribute in greisens and intensively greisenized monzogranites in the form of veinlets or dissemination, while the minority mainly precipitated in the sedimentary wall rocks, presenting as wide quartz veins. To investigate the sources of ore -forming fluids and materials of Jiagangxueshan W -Mo deposit, wolframites and quartzs, metal sulfides from greisen-and quartz vein-type orebodies are sellected for H, O and S-Pb isotope analysis, respectively. δ18OV-SMOW (‰) values of wolframite of the deposit range from 3.7-4.7. The hydrogen and oxygen isotope compositions of the quartzs selected from ores show that the δ18Owater values of quartzs are ranging from 2.0‰-4.3‰, with the δD values range from -131‰ to -84‰. The H-O data indicate that ore-forming fluids were derived from residual magma water after degassing. δ34S values of the sulfides range from +2.2‰ to +5.3‰, indicative of a magmatic source of sulfur. The values of 206Pb/204Pb、207Pb/204Pb、208Pb/204Pb are 18.582 2-18.797 1、15.671 7-15.760 6、39.462 5-39.501 2, respectively, which further show that the ore-forming materials were derived from Precambrian metamorphic basement of the central Lhasa subterrane.

       

    • loading
    • Cao, H. W., Pei, Q. M., Zhang, S. T., et al., 2017. Geology, Geochemistry and Genesis of the Eocene Lailishan Sn Deposit in the Sanjiang Region, SW China. Journal of Asian Earth Sciences, 137:220-240. doi: 10.1016/j.jseaes.2017.01.005
      Cheng, S.B., Pang, Y.C., Cao, L., 2008.The Genesis of Meng-ya' a Skarn-Type Lead-Zinc Deposit, Tibet.Geology and Mineral Resources of South China, 24(3):50-56(in Chi-nese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC200803008.htm
      Clayton, R.N., Mayeda, T.K., 1963.The Use of Bromine Pen-tafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochi-mica Acta, 27(1):43-52. doi: 10.1016/0016-7037(63)90071-1
      Dong, X., Zhang, Z.M., Liu, F., et al., 2011.Zircon U-Pb Geo-chronology of the Nyainqentanglha Group from the Lha-sa Terrane:New Constraints on the Triassic Orogeny of the South Tibet.Journal of Asian Earth Sciences, 42(4):732-739.doi: 10.1016/j.jseaes.2011.01.014
      Fu, Q., Xu, B., Zheng, Y. C., et al., 2017. Two Episodes of Mineralization in the Mengya' a Deposit and Implications for the Evolution and Intensity of Pb-Zn-(Ag) Mineraliza-tion in the Lhasa Terrane, Tibet. Ore Geology Reviews, 90:877-896. doi: 10.1016/j.oregeor-ev.2017.01.008
      Ge, L.S., Zou, Y.L., Xing, J.B., et al., 2004.Discovery of the Jaggang Snow Mountain Tungsten-Molybdenum-Cop-per-Gold Polymetallic Occurrence in the Northern Part of the Gangdise Block, Tibet.Geological Bulletin of Chi-na, 23(9):1033-1039 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2029.htm
      He, X. X., Zhu, X. K., Yang, C., et al., 2005. High-Precision Analysis of Pb Isotope Ratios Using MC-ICP-MS.Acta Geoscientia Sinica, 26(Suppl. 1):19-22 (in Chinese with English abstract).
      Hou, Z. Q., Cook, N. J., 2009. Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue. Ore Geology Reviews, 36(1-3):2-24.doi: 10.1016/j.oregeorev.2009.05.001
      Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015a. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Econom-ic Geology, 110(6):1541-1575. doi: 10.2113/econgeo.110.6.1541
      Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a.Metallogene-ses in the Collisional Orogen of the Qinghai-Tibet Pla-teau:Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2):340-351(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200602013.htm
      Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006c.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late-Collisional Transformation Setting. Mineral De-posits, 25(5):521-543(in Chinese with English abstract).
      Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006d.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineraliza-tion in Post-Collisional Extension Setting. Mineral De-posits, 25(6):629-651 (in Chinese with English abstract).
      Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015b. A Genetic Linkage between Subduction-and Collision-Related Por-phyry Cu Deposits in Continental Collision Zones.Geolo-gy, 43(3):247-250.doi: 10.1130/g36362.1
      Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006b.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineraliza-tion in Main Collisional Orogenic Setting.Mineral Depos-its, 25(4):337-358 (in Chinese with English abstract).
      Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribu-tion of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet. Min-eralium Deposita, 48(2):173-192. doi: 10.1007/s00126-012-0415-6
      Huang, L. H., 2017. Geochemical Characteristics and Genesis of Enlightenment of Hahaigang W-Mo Polymetallic De-posit in Tibet(Dissertation). China University of Geosci-ences, Beijing(in Chinese with English abstract).
      Kapp, P., Yin, A., Harrison, T. M., et al., 2005. Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet.Geological Society of America Bulletin, 117(7):865-878. doi: 10.1130/B25595.1
      Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      Liang, W., Zhang, L. K., Xia, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Sci-ence, 43(8):2742-2754(in Chinese with English ab-stract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808015
      Ma, W., Liu, Y.C., Yang, Z.S., et al., 2017.Alteration, Miner-alization, and Genesis of the Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Skarn Deposit, Tibet, China.Ore Geolo-gy Reviews, 90:897-912. doi: 10.1016/j.oregeorev.2017.04.034
      Matsuhisa, Y., Goldsmith, J.R., Clayton, R.N., 1979.Oxygen Isotopic Fractionation in the System Quartz-Albite-Anor-thite-Water. Geochimica et Cosmochimica Acta, 43(7):1131-1140. doi: 10.1016/0016-7037(79)90099-1
      Ohmoto, H., 1972.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology, 67(5):551-578.doi: 10.2113/gsecongeo.67.5.551
      Ohmoto, H., 1986.Stable Isotope Geochemistry of Ore Depos-its. Reviews in Mineralogy and Geochemistry, 16(1):491-559.
      Pan, G.T., Ding, J., Yao, D.S., et al., 2004.Guidebook of 1:1 500 000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Chengdu Cartographic Press, Chengdu (in Chinese).
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Tempo-ral Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533(in Chinese with English abstract).
      Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883.doi: 10.2113/gsecongeo.69.6.843
      Wang, Z.H., Wang, K.Q., Yu, W.Q., et al., 2006a.Re-Os Iso-topic Ages of Tungsten-Molybdenum (Bismuth) Poly-Metallic Ore Deposit in the Jiagang Snowy Mountain, Shenzha County, Tibet and the Implications.Geology of Anhui, 16(2):112-115, 119(in Chinese with English ab-stract).
      Wang, Z.H., Wu, X.Q., Wang, K.Q., et al., 2006b.Geochemi-cal Characteristics of the Garuo Monzogranite in the Jag-gang Xueshan W-Mo (-Bi) District, Southwestern Xainza, Tibet, China. Geological Bulletin of China, 25(12):1487-1491(in Chinese with English abstract).
      Wang, Z.H., Wu, X.Q., Wang, K.Q., et al., 2007.Stable Iso-tope and Ore Genesis of Jiagangxueshan W-Mo-Bi Polymetallic Deposit, Shenzha County, Tibet. Geology and Prospecting, 43(3):6-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200612018.htm
      Wei, W. F., Hu, R. Z., Bi, X. W., et al., 2012. Infrared Micro-thermometric and Stable Isotopic Study of Fluid Inclu-sions in Wolframite at the Xihuashan Tungsten Deposit, Jiangxi Province, China. Mineralium Deposita, 47(6):589-605. doi: 10.1007/s00126-011-0377-0
      Wu, C.D., Zheng, Y.C., Zhang, S., et al., 2015.Ar-Ar Age of Biotite from the Nuri Cu-W-Mo Deposit in Tibet, and Its Geodynamic Significance. Acta Geologica Sinica, 89(9):1673-1682 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201509010
      Wu, K.X., Hu, R.Z., Bi, X.W., et al., 2002.Ore Lead Isotopes as a Tracer for Ore-Forming Material Sources:A Re-view. Geology Geochemistry, 30(3):73-81(in Chinese with English abstract).
      Xu, P.Y., Zheng, Y.C., Fu, Q., et al., 2017.Geology of the Jia-gangxueshan W-Mo Polymetallic Deposit:The First Greisen-Type W Deposit in Tibet. Acta Petrologica et Mineralogica, 36(2):227-240(in Chinese with English abstract).
      Yang, Z.M., Hou, Z.Q., White, N.C., et al., 2009.Geology of the Post-Collisional Porphyry Copper-Molybdenum De-posit at Qulong, Tibet.Ore Geology Reviews, 36(1-3):133-159. doi: 10.1016/j.oregeor-ev.2009.03.003
      Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015.High-Mg Dio-rite from Qulong in Southern Tibet:Implications for the Genesis of Adakite-Like Intrusions and Associated Por-phyry Cu Deposits in Collisional Orogens.Journal of Pe-trology, 56(2):227-254.doi: 10.1093/petrol-ogy/egu076
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
      Zartman, R.E., Doe, B.R., 1981.Plumbotectonics:The Model. Tectonophysics, 75(1-2):135-162. doi: 10.1016/0040-1951(81)90213-4
      Zhang, L. G., 1987. Oxygen Isotope Studies of Wolframite in Tungsten Ore Deposits of South China. Geochimica, 16(3):233-242(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=faf75e2683295e1a7882a941735e8d80&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, L.G., Liu, J.X., Chen, Z.S., et al., 1994.Experimental Investigations of Oxygen Isotope Fractionation in Cassit-erite and Wolframite. Economic Geology, 89(1):150-157. doi: 10.2113/gsecongeo.89.1.150
      Zhang, Z.M., Dong, X., Geng, G.S., et al., 2010.Precambrian Metamorphism of the Northern Lhasa Terrane, South Tibet and Its Tectonic Implications.Acta Geologica Sini-ca, 84(4):449-456 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201004001
      Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mecha-nism of Leucogranites. Earth Science, 43(1):82-98(in Chinese with English abstract).
      Zhao, X. Y., Yang, Z. S., Zheng, Y. C., et al., 2015. Geology and Genesis of the Post-Collisional Porphyry-Skarn De-posit at Bangpu, Tibet.Ore Geology Reviews, 70:486-509.doi: 10.1016/j.oregeorev.2014.09.014
      Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet.Ore Geology Reviews, 70:510-532. doi: 10.1016/j.oregeorev.2015.04.004
      Zheng, Y.C., Hou, Z.Q., Li, Q.Y., et al., 2012a.Origin of Late Oligocene Adakitic Intrusives in the Southeastern Lhasa Terrane:Evidence from In-Situ Zircon U-Pb Dating, Hf-O Isotopes, and Whole-Rock Geochemistry.Lithos, 148:296-311.doi: 10.1016/j.lithos.2012.05.026
      Zheng, Y. C., Hou, Z. Q., Li, W., et al., 2012b. Petrogenesis and Geological Implications of the Oligocene Chongmu-da-Mingze Adakite-Like Intrusions and Their Mafic En-claves, Southern Tibet.The Journal of Geology, 120(6):647-669.doi: 10.1086/667812
      Zheng, Y. C., Liu, S. A., Wu, C. D., et al., 2019. Cu Isotopes Reveal Initial Cu Enrichment in Sources of Giant Por-phyry Deposits in a Collisional Setting. Geology, 47(2):135-138. doi: 10.1130/g45362.1
      Zheng, Y. F., 2001. Theoretical Modeling of Stable Isotope Systems and Its Applications to Geochemistry of Hydro-thermal Ore Deposits.Mineral Deposits, 20(1):57-70, 85(in Chinese with English abstract).
      Zheng, Y.F., Fu, B., Zhang, X.H., 1996.Effects of Magma De-gassing on the Carbon and Sulfur Isotope Compositions of Igneous Rocks. Chinese Journal of Geology, 31(1):43-53 (in Chinese with English abstract).
      Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Tempo-Spa-tial Variations of Mesozoic Magmatic Rocks in the Gang-dise Belt, Tibet, China, with a Discussion of Geodynam-ic Setting-Related Issues.Geological Bulletin of China, 27(9):1535-1550(in Chinese with English abstract).
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Ter-rane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. doi: 10.1016/j.epsl.2010.11.005
      程顺波, 庞迎春, 曹亮, 2008.西藏蒙亚啊矽卡岩铅锌矿床的成因探讨.华南地质与矿产, 24(3):50-56. doi: 10.3969/j.issn.1007-3701.2008.03.008
      葛良胜, 邹依林, 邢俊兵, 等, 2004.西藏冈底斯地块北部甲岗雪山钨钼铜金多金属矿产地的发现及意义.地质通报, 23(9):1033-1039. doi: 10.3969/j.issn.1671-2552.2004.09.029
      何学贤, 朱祥坤, 杨淳, 等, 2005.多接收器等离子体质谱(MC-ICP-MS) Pb同位素高精度研究.地球学报, 26(增刊1):19-22. http://d.old.wanfangdata.com.cn/Periodical/dqxb2005z1008
      侯增谦, 莫宣学, 杨志明, 等, 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质, 33(2):340-351. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602013
      侯增谦, 曲晓明, 杨竹森, 等, 2006d.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯增谦, 潘桂棠, 王安建, 等, 2006c.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯增谦, 潘桂棠, 王安建, 等, 2006c.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯增谦, 杨竹森, 徐文艺, 等, 2006b.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      黄礼恒, 2017.西藏哈海岗钨钼多金属矿床地球化学特征及成因启示(硕士学位论文).北京: 中国地质大学.
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学, 43(8):2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909
      潘桂棠, 丁俊, 姚冬生, 等, 2004.青藏高原及邻区地质图(1:1 500 000).成都:成都地图出版社.
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      王治华, 王科强, 喻万强, 等, 2006a.西藏申扎县甲岗雪山钨钼(铋)多金属矿床的Re-Os同位素年龄及其意义.安徽地质, 16(2):112-115, 119. http://d.old.wanfangdata.com.cn/Periodical/ahdz200602006
      王治华, 吴兴泉, 王科强, 等, 2006b.西藏申扎西南部甲岗雪山钨钼(铋)矿区嘎若二长花岗岩体的地球化学特征.地质通报, 25(12):1487-1491. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200612019
      王治华, 吴兴泉, 王科强, 等, 2007.西藏申扎县甲岗雪山钨、钼、铋多金属矿床稳定同位素地球化学特征及矿床成因探讨.地质与勘探, 43(3):6-10. doi: 10.3969/j.issn.0495-5331.2007.03.002
      吴昌炟, 郑远川, 张松, 等, 2015.冈底斯南缘努日Cu-W-Mo多金属矿床黑云母Ar-Ar定年及其地质意义.地质学报, 89(9):1673-1682. doi: 10.3969/j.issn.0001-5717.2015.09.010
      吴开兴, 胡瑞忠, 毕献武, 等, 2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学, 30(3):73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013
      徐培言, 郑远川, 付强, 等, 2017.西藏首例云英岩型钨矿:甲岗雪山W-Mo多金属矿床地质特征研究.岩石矿物学杂志, 36(2):227-240. doi: 10.3969/j.issn.1000-6524.2017.02.008
      张理刚, 1987.华南钨矿床黑钨矿的氧同位素研究.地球化学, 16(3):233-242. doi: 10.3321/j.issn:0379-1726.1987.03.005
      张泽明, 董昕, 耿官升, 等, 2010.青藏高原拉萨地体北部的前寒武纪变质作用及构造意义.地质学报, 84(4):449-456. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201004001
      张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. http://www.cqvip.com/QK/94035X/201801/674481867.html
      郑永飞, 2001.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质, 20(1):57-70, 85. doi: 10.3969/j.issn.0258-7106.2001.01.007
      郑永飞, 傅斌, 张学华, 1996.岩浆去气作用碳硫同位素效应.地质科学, 31(1):43-53. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.004.htm
      朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 27(9):1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (4780) PDF downloads(61) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return