• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 2
    Feb.  2021
    Turn off MathJax
    Article Contents
    Zhou Xiaoyao, Zhang Yuxiu, Zhang Jiheng, Hu Juncheng, Li Wuyi, Huang Rongcai, Liao Jia, Wang Jiahao, Tang Xianchun, Zhu Lidong, 2021. Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma. Earth Science, 46(2): 474-488. doi: 10.3799/dqkx.2019.073
    Citation: Zhou Xiaoyao, Zhang Yuxiu, Zhang Jiheng, Hu Juncheng, Li Wuyi, Huang Rongcai, Liao Jia, Wang Jiahao, Tang Xianchun, Zhu Lidong, 2021. Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma. Earth Science, 46(2): 474-488. doi: 10.3799/dqkx.2019.073

    Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma

    doi: 10.3799/dqkx.2019.073
    • Received Date: 2019-09-15
    • Publish Date: 2021-02-15
    • Genetic study on the granite-rhyolite associations is an essential way to uncover the mechanism of crustal evoltion. Geochemistry, zircon U-Pb dating, and oxygen isotopes of the Dengtong volcanic-plutonic complex in the central Lhasa Terrane are reported in this paper. Zircon SHRIMP U-Pb ages for the granite porphyry, rhyolite and rhyolitic ignimbrite samples are 64.1±0.8 Ma, 62.9±0.7 Ma and 63.2±0.7 Ma, respectively. These rocks display similar geochemical characterstics. They are high K calc-alkaline and weakly peraluminous, exhibit HFSE depletion, LILE and LREE enrichment, and flat HREE, with consistent zircon oxygen isotopic composition (δ18O=6.15‰-7.34‰), suggesting consecutive magma evolution of cognate origin. The rhyolite and granite porphyry are depleted in Ba, Sr, P and Ti with significant negative Eu anomaly, indicating conspicuous fractionation. The rhyolite presents the extracted melt from the mush enriched in mineral phases, while the granite porphyry generated from the mush by fractional crystallization. The rhyolitic ignimbrite displays relatively weak negative Eu anomaly, and was generated by the eruption of the residual magma mush. Considering the temporal and spatial distribution of the Paleocene magmatic rocks along the central Lhasa Terrane, it is proposed that the roll-back of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere subducted beneath the Lhasa Terrane was responsible for the geodynamic regime of the Dengtong volcanic-plutonic complex. The upwelling of the asthenosphere material caused partial melting of lower crust, and resulted in intrusive or volcanic rocks.

       

    • loading
    • Bachmann, O., Bergantz, G. W., 2004. On the Origin of Crystal-Poor Rhyolites: Extracted from Batholithic Crystal Mushes. Journal of Petrology, 45(8): 1565-1582. https://doi.org/10.1093/petrology/egh019
      Bachmann, O., Huber, C., 2016. Silicic Magma Reservoirs in the Earth's Crust. American Mineralogist, 101(11): 2377-2404. https://doi.org/10.2138/am-2016-5675
      Bindeman, I. N., Ponomareva, V. V., Bailey, J. C., et al., 2004. Volcanic Arc of Kamchatka: A Province with High-δ18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust. Geochimica et Cosmochimica Acta, 68(4): 841-865. https://doi.org/10.1016/j.gca.2003.07.009
      Blum, T. B., Kitajima, K., Nakashima, D., et al., 2016. Oxygen Isotope Evolution of the Lake Owyhee Volcanic Field, Oregon, and Implications for the Low-δ18O Magmatism of the Snake River Plain-Yellowstone Hotspot and Other Low-δ18O Large Igneous Provinces. Contributions to Mineralogy and Petrology, 171(11): 1-23. https://doi.org/10.1007/s00410-016-1297-x
      Burgisser, A., Bergantz, G. W., 2011. A Rapid Mechanism to Remobilize and Homogenize Highly Crystalline Magma Bodies. Nature, 471(7337): 212-215. https://doi.org/10.1038/nature09799
      Chappell, B. W., White, A. J. R., Williams, I. S., et al., 1999. Discussion and Reply: Evaluation of Petrogenetic Models for Lachlan Fold Belt Granitoids: Implications for Crustal Architecture and Tectonic Models. Australian Journal of Earth Sciences, 46(5): 827-836. https://doi.org/10.1046/j.1440-0952.1999.00742.x
      Condie, K. C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511810589
      Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2005. A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks in the Lhünzhub Basin, Northern Lhasa, Tibet, China. Geological Bulletin of China, 24(6): 549-557(in Chinese with English abstract). http://www.researchgate.net/publication/313201746_A_new_understanding_of_the_stratigraphic_successions_of_the_Lingzizong_volcanic_rocks_in_the_Lh_nzhub_basin_northern_Lhasa_Tibet
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gualda, G. A. R., Ghiorso, M. S., 2013. Low-Pressure Origin of High-Silica Rhyolites and Granites. The Journal of Geology, 121(5): 537-545. https://doi.org/10.1086/671395
      Guo, T. Y., Liang, D. Y., Zhang, Y. Z., 1991. Ali Geology, Tibet. Wuhan: China University of Geosciences Press (in Chinese).
      He, S. D., Kapp, P., DeCelles, P. G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433(1-4): 15-37. https://doi.org/10.1016/j.tecto.2007.01.005
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hu, X. M., Garzanti, E., Moore, T., et al., 2015. Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59±1 Ma). Geology, 43(10): 859-862. https://doi.org/10.1130/g36872.1
      Ickert, R. B., Hiess, J., Williams, I. S., et al., 2008. Determining High Precision, In Situ, Oxygen Isotope Ratios with a SHRIMP II: Analyses of MPI-DING Silicate-Glass Reference Materials and Zircon from Contrasting Granites. Chemical Geology, 257(1-2): 114-128. https://doi.org/10.2113/0530027
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Jia, J. C., Wen, C. S., Wang, G. H., et al., 2005. Geochemical Characteristics and Geodynamic Significance of the Linzizong Group Volcanic Rocks in the Gangdise Area. Chinese Geology, 32(3): 396-404(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200503007.htm
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040
      Lee, H. Y., Chung, S. L., Lo, C. H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2): 20-35. https://doi.org/10.1016/j.tecto.2009.02.031
      Lee, H. Y., Chung, S. L., Wang, Y. B., et al., 2007. Age, Petrogenesis and Geological Significance of the Linzizong Volcanic Successions in the Linzhou Basin, Southern Tibet: Evidence from Zircon U-Pb Dates and Hf Isotopes. Acta Petrologica Sinica, 23(2): 493-500(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702026.htm
      Li, Y., Zhang, S. Z., Li, F. Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8): 2755-2766(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201808017.htm
      Li, Z. H., Zheng, L. L., Li, J. M., et al., 2009. 40Ar-39Ar Dating of Linzizong Volcanic Rocks in the Central Gangdise Area and Its Geological Implication. Bulletin of Mineralogy, Petrology and Geochemistry, 28(3): 223-227(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200903002.htm
      Liang, Y. P., Zhu, J., Ci, Q., et al., 2010. Zircon U-Pb Ages and Geochemistry of Volcanic Rock from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau. Earth Science, 35(2): 211-223(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201002004.htm
      Linnen, R. L., Samson, I. M., Williams-Jones, A. E., et al., 2014. Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-095975-7.01124-4
      Liu, A. L., Zhu, D. C., Wang, Q., et al., 2015. LA-ICP-MS Zircon U-Pb Age and Origin of the Linzizong Volcanic Rocks from Milashan, Southern Tibet. Geological Bulletin of China, 34(5): 826-833(in Chinese with English abstract). http://www.researchgate.net/publication/282680271_LA-ICP-MS_zircon_U-Pb_age_and_origin_of_the_Linzizong_volcanic_rocks_from_Milashan_southern_Tibet
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1-2): 225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026542218
      Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Ruprecht, P., Bachmann, O., 2010. Pre-Eruptive Reheating during Magma Mixing at Quizapu Volcano and the Implications for the Explosiveness of Silicic Arc Volcanoes. Geology, 38(10): 919-922. https://doi.org/10.1130/g31110.1
      Simon, L., Lécuyer, C., 2005. Continental Recycling: The Oxygen Isotope Point of View. Geochemistry, Geophysics, Geosystems, 6(8): Q08004. https://doi.org/10.1029/2005gc000958
      Streck, M. J., 2014. Evaluation of Crystal Mush Extraction Models to Explain Crystal-Poor Rhyolites. Journal of Volcanology and Geothermal Research, 284: 79-94. https://doi.org/10.1016/j.jvolgeores.2014.07.005
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, R. M., 1968. The Association of Manganese and Cobalt in Soils: Further Observations. Journal of Soil Science, 19(1): 77-80. https://doi.org/10.1111/j.1365-2389.1968.tb01522.x
      Valley, J. W., Kinny, P. D., Schulze, D. J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11. https://doi.org/10.1007/s004100050432
      Wang, Q. L., 2011. Geochemistry and Zircon U-Pb Chronology of Linzizong Group Volcanic Rocks in Western Gangdese, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wu, F. Y., Ji, W. Q., Wang, J. G., et al., 2014. Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 314(2): 548-579. https://doi.org/10.2475/02.2014.04
      Xie, B. J., Zhou, S., Xie, G. G., et al., 2013. Zircon SHRIMP U-Pb Data and Regional Contrasts of Geochemical Characteristics of Linzizong Volcanic Rocks from Konglong and Dinrenle Region, Middle Gangdese Belt. Acta Petrologica Sinica, 29(11): 3803-3814(in Chinese with English abstract). http://www.researchgate.net/publication/286481126_Zircon_SHRIMP_U-Pb_data_and_regional_contrasts_of_geochemical_characteristics_of_Linzizong_volcanic_rocks_from_Konglong_and_Dinrenle_region_middle_Gangdese_belt
      Yang, H., Xiang, S. Y., Wang, X., et al., 2013. Age and Tectonic Setting of Dianzhong Formation in the Maxiang Area, Tibet, China. Geological Science and Technology Information, 32(4): 89-96(in Chinese with English abstract).
      Yu, F., Li, Z. G., Zhao, Z. D., et al., 2010. Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area, Central-Western Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2217-2225(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_ysxb98201007022.aspx
      Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3-4): 236-249. https://doi.org/10.1016/j.earscirev.2012.06.001
      Zhang, Y. X., Zhang, K. J., 2017. Early Permian Qiangtang Flood Basalts, Northern Tibet, China: A Mantle Plume That Disintegrated Northern Gondwana? Gondwana Research, 44: 96-108. https://doi.org/10.1016/j.gr.2016.10.019
      Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. 40Ar/39Ar Ages of Linzizong Igneous Rocks in Linzhou Basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103(in Chinese). doi: 10.1360/csb2004-49-20-2095
      Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3): 298-309. https://doi.org/10.1016/j.jseaes.2008.05.003
      Zou, J. Q., Yu, H. X., Wang, B. D., et al., 2018. Petrogenesis and Geological Implications of Early Jurassic Granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8): 2795-2810(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808020.htm
      董国臣, 莫宣学, 赵志丹, 等, 2005. 拉萨北部林周盆地林子宗火山岩层序新议. 地质通报, 24(6): 549-557. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200506012.htm
      郭铁鹰, 梁定益, 张宜智, 1991. 西藏阿里地质. 武汉: 中国地质大学出版社.
      贾建称, 温长顺, 王根厚, 等, 2005. 冈底斯地区林子宗群火山岩岩石地球化学特征及地球动力学意义. 中国地质, 32(3): 396-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200503007.htm
      李皓扬, 钟孙霖, 王彦斌, 等, 2007. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据. 岩石学报, 23(2): 493-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702026.htm
      李勇, 张士贞, 李奋其, 等, 2018. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义. 地球科学, 43(8): 2755-2766. doi: 10.3799/dqkx.2018.593
      李再会, 郑来林, 李军敏, 等, 2009. 冈底斯中段林子宗火山岩40Ar-39Ar年龄及其意义. 矿物岩石地球化学通报, 28(3): 223-227. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200903002.htm
      梁银平, 朱杰, 次邛, 等, 2010. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征. 地球科学, 35(2): 211-223. doi: 10.3799/dqkx.2010.021
      刘安琳, 朱弟成, 王青, 等, 2015. 藏南米拉山地区林子宗火山岩LA-ICP-MS锆石U-Pb年龄和起源. 地质通报, 34(5): 826-833. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201505003.htm
      莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm
      王乔林, 2011. 冈底斯西段林子宗群火山岩的地球化学特征及锆石年代学研究(硕士学位论文). 北京: 中国地质大学.
      谢冰晶, 周肃, 谢国刚, 等, 2013. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比. 岩石学报, 29(11): 3803-3814. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311013.htm
      杨辉, 向树元, 王欣, 等, 2013. 西藏马乡地区典中组年龄厘定及其构造背景. 地质科技情报, 32(4): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304015.htm
      于枫, 李志国, 赵志丹, 等, 2010. 西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义. 岩石学报, 26(7): 2217-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007023.htm
      周肃, 莫宣学, 董国臣, 等, 2004. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架. 科学通报, 49(20): 2095-2103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200420013.htm
      邹洁琼, 余红霞, 王保弟, 等, 2018. 南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义. 地球科学, 43(8): 2795-2810. doi: 10.3799/dqkx.2018.589
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (1265) PDF downloads(66) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return