• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Hu Wenfeng, Zhang Yekai, Liu Jinhua, Guo Liang, Zhou Lian, 2019. The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance. Earth Science, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077
    Citation: Hu Wenfeng, Zhang Yekai, Liu Jinhua, Guo Liang, Zhou Lian, 2019. The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance. Earth Science, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077

    The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance

    doi: 10.3799/dqkx.2019.077
    • Received Date: 2018-08-25
    • Publish Date: 2019-06-15
    • We present Mo and Cu isotope of molybdenite and chalcopyrite from two porphyry deposits (Qulong, Dabu) and one quartz-molybdenite vein -type deposit (Jigongcun) along the Gangdese metallogenic belt in the Tibetan Plateau.The results show that the range of δ65/63Cu in the Gangdese porphyry deposit in Tibet is between +0.01‰-+0.98‰, and the range of δ97/95Mo is between -0.34‰ to -0.15‰.The δ97/95Mo of molybdenum in the quartz-molybdenite vein-type deposit is obviously lighter, and cluster from -0.35 ‰ to -0.23‰. Two types porphyry deposits produced in different tectonic settings from the island arc and collisional orogenic belt, it is found that they have similar range of δ65/63Cu in chalcopyrite, all of which are characterized by unimodal distribution; In contrast, the hydrothermal veins and ore-bearing porphyry from the Qulong porphyry deposit have a similar range of δ65/63Cu in chalcopyrite, which suggest that the origin of Cu is consistent. In addition, in the collisional orogenic belt porphyry deposit, different alteration zones have different Cu, Mo isotopic compositions, and from the center outward of the the alteration zone, Cu-Mo isotopic has a certain negative correlation, and this relationship have close relationship with the property of mineral fluid. Comparing the range of δ97/95Mo of the quartz vein type and porphyry type of deposits in the Gangdese area, it is found that the former has a lower δ97/95Mo, which may suggest that the ore sources of the two types of deposits are consistent.

       

    • loading
    • Asael, D., Matthews, A., Bar-Matthews, M., et al., 2007.Cop-per Isotope Fractionation in Sedimentary Copper Miner-alization (Timna Valley, Israel). Chemical Geology, 243(3-4):238-254. https://doi.org/10.1016/j.chem-geo.2007.06.007
      Ehrlich, S., Butler, I., Halicz, L., et al., 2004. Experimental Study of the Copper Isotope Fractionation between Aqueous Cu(Ⅱ) and Covellite, CuS. Chemical Geology, 209(3-4):259-269. https://doi.org/10.1016/j.chem-geo.2004.06.010
      Greber, N. D., Hofmann, B. A., Voegelin, A. R., et al., 2011.Mo Isotope Composition in Mo-Rich High-and Low-T Hydrothermal Systems from the Swiss Alps.Geochimica et Cosmochimica Acta, 75(21):6600-6609. https://doi.org/10.1016/j.gca.2011.08.034
      Hou, Q.H., Zhou, L., Gao, S., et al., 2016.Use of Ga for Mass Bias Correction for the Accurate Determination of Cop-per Isotope Ratio in the NIST SRM 3114 Cu Standard and Geological Samples by MC-ICPMS.Journal of Ana-lytical Atomic Spectrometry, 31(1):280-287. doi: 10.1039/C4JA00488D
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hou, Z. Q., Lv, Q. T., Wang, A. J., et al., 2003. Continental Collision and Related Metallogeny:A Case Study of Min-eralization in Tibetan Orogen. Mineral Deposits, 22(4):319-333(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200304000.htm
      Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribu-tion of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet.Min-eralium Deposita, 48(2):173-192. https://doi.org/10.1007/s00126-012-0415-6
      Huang, L.C., Jiang, S.Y., 2012.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Ji-angxi Province. Acta Petrologica Sinica, 28(12):3887-3900(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201212008.htm
      Larson, P. B., Maher, K., Ramos, F. C., et al., 2003. Copper Isotope Ratios in Magmatic and Hydrothermal Ore-Forming Environments. Chemical Geology, 201(3-4):337-350. doi: 10.1016/j.chemgeo.2003.08.006
      Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8):2684-2700(in Chinese with English ab-stract). https://doi.org/10.3799/dqkx.2018.170
      Li, Z.Q., Yang, Z.M., Zhu, X.K., et al., 2009.Cu Isotope Com-position of Qulong Porphyry Cu Deposit, Tibet. Acta Geologica Sinica, 83(12):1985-1996(in Chinese with English abstract).
      Malinovsky, D., Rodushkin, I., Baxter, D.C., et al., 2005.Mo-lybdenum Isotope Ratio Measurements on Geological Samples by MC-ICPMS. International Journal of Mass Spectrometry, 245(1-3):94-107. doi: 10.1016/j.ijms.2005.07.007
      Markl, G., Lahaye, Y, Schwinn, G., 2006.Copper Isotopes as Monitors of Redox Processes in Hydrothermal Mineral-ization. Geochimica et Cosmochimica Acta, 70(16):4215-4228. doi: 10.1016/j.gca.2006.06.1369
      Mathur, R., Titley, S., Barra, F., et al., 2009.Exploration Po-tential of Cu Isotope Fractionation in Porphyry Copper Deposits. Journal of Geochemical Exploration, 102(1):1-6. https://doi.org/10.1016/j.gexplo.2008.09.004
      Nie, L. M., Li, Z. Q., Fang, X. J., 2012. Cu Isotope Fraction-ation during Magma Evolution Process of Qulong Por-phyry Copper Deposit, Tibet. Mineral Deposits, 31(4):718-726(in Chinese with English abstract).
      Qu, X. M., Hou, Z. Q., Zaw, K., et al., 2007. Characteristics and Genesis of Gangdese Porphyry Copper Deposits in the Southern Tibetan Plateau:Preliminary Geochemical and Geochronological Results.Ore Geology Reviews, 31(1-4):205-223. doi: 10.1016/j.oregeorev.2005.03.012
      Rempel, K.U., Migdisov, A.A., Williams-Jones, A.E., 2006.The Solubility and Speciation of Molybdenum in Water Vapour at Elevated Temperatures and Pressures:Impli-cations for Ore Genesis. Geochimica et Cosmochimica Acta, 70(3):687-696. https://doi.org/10.1016/j.gca.2005.09.013
      Rempel, K.U., Williams-Jones, A.E., Migdisov, A.A., 2008. The Solubility of Molybdenum Dioxide and Trioxide in HCl-Bearing Water Vapour at 350℃ and Pressures up to 160 bars. Geochimica et Cosmochimica Acta, 72(13):3074-3083. https://doi.org/10.1016/j.gca.2008.04.015
      Rempel, K.U., Williams-Jones, A.E., Migdisov, A.A., 2009. The Partitioning of Molybdenum (VI) between Aqueous Liquid and Vapour at Temperatures up to 370℃. Geo-chimica et Cosmochimica Acta, 73(11):3381-3392. https://doi.org/10.1016/j.gca.2009.03.004
      Seo, J. H., Guillong, M., Heinrich, C. A., 2012. Separation of Molybdenum and Copper in Porphyry Deposits:The Roles of Sulfur, Redox, and pH in Ore Mineral Deposi-tion at Bingham Canyon. Economic Geology, 107(2):333-356. https://doi.org/10.2113/econgeo.107.2.333
      Shafiei, B., Shamanian, G., Mathur, R., et al., 2015. Mo Isotope Fractionation during Hydrothermal Evolution of Porphyry Cu Systems.Mineralium Deposita, 50(3):281-291. https://doi.org/10.1007/s00126-014-0537-0
      Wang, Y., Zhou, L., Gao, S., et al., 2016.Variation of Molyb-denum Isotopes in Molybdenite from Porphyry and Vein Mo Deposits in the Gangdese Metallogenic Belt, Tibetan Plateau and Its Implications.Mineralium Deposita, 51(2):201-210. doi: 10.1007/s00126-015-0602-3
      Wang, Y. Y., Tang, J. X., Zheng, W. B., et al., 2015. Mecha-nism of Metal Precipitation in Dabu Porphyry Cu-Mo Deposit, Quxu Country, Tibet. Mineral Deposits, 34(1):81-97(in Chinese with English abstract).
      Wu, S., Zheng, Y.Y., Wang, D., et al., 2017.Variation of Cop-per Isotopes in Chalcopyrite from Dabu Porphyry Cu-Mo Deposit in Tibet and Implications for Mineral Explo-ration.Ore Geology Reviews, 90:14-24. https://doi.org/10.1016/j.oregeorev.2017.10.001
      Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008.Qulong Su-perlarge Porphyry Cu Deposit in Tibet:Geology, Altera-tion and Mineralization. Mineral Deposits, 27(3):279-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200803003.htm
      Yang, Z.M., Xie, Y.L., Li, G.M., et al., 2006.SEM/EDS Con-straints on Nature of Ore-Forming Fluids in Gangdese Porphyry Copper Belt:Case Studies of Qulong and Tinggong Deposits.Mineral Deposits, 25(2):147-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200602003.htm
      Yao, J.M., Mathur, R., Sun, W.D., et al., 2016.Fractionation of Cu and Mo Isotopes Caused by Vapor-Liquid Parti-tioning, Evidence from the Dahutang W-Cu-Mo Ore Field. Geochemistry, Geophysics, Geosystems, 17(5):1725-1739. https://doi.org/10.1002/2016gc006328
      Zhang, S.K., Zheng, Y.Y., Zhang, G.Y., et al., 2013.Geochro-nological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County, Tibet. Mineral Deposits, 32(3):641-648(in Chinese with English ab-stract).
      Zhang, S.T., Zhao, P.D., 2011.Porphyry Ore Deposits:Impor-tant Study Subjects of Nontraditional Mineral Resources. Earth Science, 36(2):247-254(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201102010.htm
      Zhao, P. P., Li, J., Zhang, L., et al., 2016. Molybdenum Mass Fractions and Isotopic Compositions of International Geological Reference Materials. Geostandards and Geo-analytical Research, 40(2):217-226. https://doi.org/10.1111/j.1751-908x.2015.00373.x
      Zheng, H. T., Zheng, Y. Y., Xu, J., et al., 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qin-gcaoshan Porphyry Cu-Au Deposit, Tibet.Earth Science, 43(8):2858-2874(in Chinese with English abstract).
      Zheng, Y. Y., Xue, Y. X., Cheng, L. J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1):103-108(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200401018
      Zhu, X.K., Guo, Y., Williams, R.J.P., et al., 2002.Mass Frac-tionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200(1-2):47-62. https://doi.org/10.1016/s0012-821x(02)00615-5
      Zhu, X.K., O'Nions, R.K., Guo, Y., et al., 2000.Determination of Natural Cu-Isotope Variation by Plasma-Source Mass Spectrometry:Implications for Use as Geochemical Trac-ers.Chemical Geology, 163(1-4):139-149. https://doi.org/10.1016/s0009-2541(99)00076-5
      侯增谦, 吕庆田, 王安建, 等, 2003.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. doi: 10.3969/j.issn.0258-7106.2003.04.001
      黄兰椿, 蒋少涌, 2012.江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究.岩石学报, 28(12):3887-3900. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201212008
      李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. http://earth-science.net/WebPage/Article.aspx?id=3905
      李振清, 杨志明, 朱祥坤, 等, 2009.西藏驱龙斑岩铜矿铜同位素研究.地质学报, 83(12):1985-1996. doi: 10.3321/j.issn:0001-5717.2009.12.013
      聂龙敏, 李振清, 房小捷, 等, 2012.西藏驱龙斑岩铜矿床岩浆演化过程中的Cu同位素分馏.矿床地质, 31(4):718-726. doi: 10.3969/j.issn.0258-7106.2012.04.005
      王艺云, 唐菊兴, 郑文宝, 等, 2015.西藏曲水县达布斑岩型铜钼矿床金属沉淀机制探讨.矿床地质, 34(1):81-97. http://d.old.wanfangdata.com.cn/Periodical/kcdz201501005
      杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002
      杨志明, 谢玉玲, 李光明, 等, 2006.西藏冈底斯斑岩铜矿带成矿流体的扫描电镜(能谱)约束——以驱龙和厅宫矿床为例.矿床地质, 25(2):147-154. doi: 10.3969/j.issn.0258-7106.2006.02.004
      张苏坤, 郑有业, 张刚阳, 等, 2013.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束.矿床地质, 32(3):641-648. doi: 10.3969/j.issn.0258-7106.2013.03.014
      张寿庭, 赵鹏大, 2011.斑岩型矿床——非传统矿产资源研究的重要对象.地球科学, 36(2):247-254. http://earth-science.net/WebPage/Article.aspx?id=2087
      郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8):2858-2874. http://earth-science.net/WebPage/Article.aspx?id=3917
      郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学, 29(1):103-108. doi: 10.3321/j.issn:1000-2383.2004.01.018
    • dqkx-44-6-1923-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (4205) PDF downloads(77) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return