• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 10
    Nov.  2019
    Turn off MathJax
    Article Contents
    Tao Zaili, Yin Jiyuan, Chen Wen, Li Dapeng, Xu Zhihua, Du Qiuyi, 2019. Sr-Nd-Hf Isotopic Characteristics of Early Permian Ⅰ-Type Granites in Southern Tianshan: Petrogenesis and Implications for Continental Crustal Growth. Earth Science, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079
    Citation: Tao Zaili, Yin Jiyuan, Chen Wen, Li Dapeng, Xu Zhihua, Du Qiuyi, 2019. Sr-Nd-Hf Isotopic Characteristics of Early Permian Ⅰ-Type Granites in Southern Tianshan: Petrogenesis and Implications for Continental Crustal Growth. Earth Science, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079

    Sr-Nd-Hf Isotopic Characteristics of Early Permian Ⅰ-Type Granites in Southern Tianshan: Petrogenesis and Implications for Continental Crustal Growth

    doi: 10.3799/dqkx.2019.079
    • Received Date: 2019-04-12
    • Publish Date: 2019-11-11
    • The Late Carboniferous-Early Permian granitic intrusions extensively occur in the southern Tianshan block, whereas the petrogenesis of these granites and their tectonic setting remain controversial. In this paper, it reports new zircon U-Pb age, and geochemical and Sr-Nd compositions and zircon Hf isotopic compositions of the biotite monzonitic granites in the southern Tianshan block. Based on LA-ICP-MS U-Pb zircon dating, the biotite monzonitic granites were emplaced at 295.8±1.7 Ma. They are characterized by slightly peraluminous (A/CNK=1.02-1.04), rich alkali (K2O+Na2O=7.49%-8.78%) and potassium-rich (K2O/Na2O=1.05-1.53), belonging to high potassium calc-alkaline affinity, consistent with the geochemical features of Ⅰ-type granites. They are enriched in LILEs and LREEs, depleted in HFSEs (e.g., Nb, Ta, Ti), medium-negative Eu anomalies (δEu=0.38-0.57), and predominately negative Sr, Ba anomalies. In addition, most of the biotite monzonitic granites show high initial (87Sr/86Sr)i ratios, negative εNd(t) and εHf(t) values and few samples with low and positive εNd(t) and εHf(t) values, suggesting that they were produced by mixing of mafic melt-derived mantle and felsic melt derived ancient (Paleo-Mesoproterozoic) crust, with minor involvement of the Neoproterozoic crustal material, and that the crystal fractionation of plagioclase could have occurred before the parental magma emplaced. In association with previous analysis, it is proposed that the Late Carboniferous-Early Permian magmatism in the southern Tianshan block might be related to mixing of melt-derived Precambrian basement and melt-derived mantle induced by the slab roll-back of the subducted southern Tianshan oceanic lithosphere and asthenosphere upwelling. The Phanerozoic magmatic source of the southern Tianshan block is mainly characterized by the reworking of ancient crust. Compared to other regions of CAOB, there is no excessive juvenile crustal growth in the southern Tianshan.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
      Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. https://doi.org/10.1016/j.gca.2004.09.019
      Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn- and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2-3): 568-581. https://doi.org/10.1016/j.gr.2011.01.013
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat > 2.3.co; 2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1-4): 118-131. https://doi.org/10.1016/j.tecto.2011.01.001
      Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8
      Gill, T.B., 1981. Orogenic Andesite and Plate Tectonics. Springer-Verlag, Berlin, 390.
      Gou, L. L., Zhang, L. F., Tao, R. B., et al., 2012. A Geochemical Study of Syn-Subduction and Post-Collisional Granitoids at Muzhaerte River in the Southwest Tianshan UHP Belt, NW China. Lithos, 136-139: 201-224. https://doi.org/10.1016/j.lithos.2011.10.005
      Guo, C.T., Gao, J., Li, Z., 2018. Depositional and Provenance Records of Lower Permian Sandstones from Sishichang Area, Northwestern Tarim Basin: Implications for Tectonic Evolution. Earth Science, 43(11): 4149-4168(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811030
      Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3-4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001
      Huang, H., Zhang, Z. C., Santosh, M., et al., 2014. Geochronology, Geochemistry and Metallogenic Implications of the Boziguo'er Rare Metal-Bearing Peralkaline Granitic Intrusion in South Tianshan, NW China.Ore Geology Reviews, 61: 157-174. https://doi.org/10.1016/j.oregeorev.2014.01.011
      Huang, H., Zhang, Z. C., Santosh, M., et al., 2015. Petrogenesis of the Early Permian Volcanic Rocks in the Chinese South Tianshan: Implications for Crustal Growth in the Central Asian Orogenic Belt. Lithos, 228/229: 23-42. https://doi.org/10.1016/j.lithos.2015.04.017
      Huang, H., Zhang, Z.C., Zhang, D.Y., et al., 2011. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geologica Sinica, 85(8): 1305-1333(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe201108007.htm
      Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193. doi: 10.1017/S0263593300007367
      Jiang, C.Y., Mu, Y.M., Bai, K.Y., et al., 1999. Chronology, Petrology, Geochemistry and Tectonic Environment of Granitoids in the Southern Tianshan Mountain, Western China.Acta Petrologica Sinica, 15(2): 298-308(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98199902017
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      Konopelko, D., Biske, G., Seltmann, R., et al., 2007. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 97(1-2): 140-160. https://doi.org/10.1016/j.lithos.2006.12.005
      Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103-125. https://doi.org/10.1016/j.gr.2012.12.023
      Li, J.Y., He, G.Q., Xu, X., et al., 2006. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation. Acta Geologica Sinica, 80(1): 148-168(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200601017
      Li, Q., Zhang, L.F., 2004. The P-T Path and Geological Significance of Low-Pressure Granulite-Facies Metamorphism in Muzhaerte, Southwest Tianshan. Acta Petrologica Sinica, 20(3): 583-594(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403022
      Li, Y.J., Sun, L.D., Wu, H.R., et al., 2005. Permo-Carboniferous Radiolaria from the Wupatarkan Group, West Terminal of Chinese South Tianshan. Chinese Journal of Geology, 40(2): 220-226, 236(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200502006
      Liang, X.R., Wei, G.J., Li, X. H., et al., 2002. Rapid and Precise Measurement for 143Nd/144Nd Isotopic Ratios Using a Multi-Collector Inductively Coupled Plasma Mass Spectrometer. Rock and Mineral Analysis, 21(4): 247-251(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs200204002
      Long, L. L., Gao, J., Klemd, R., et al., 2011. Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen: Implications for Continental Growth in the Southwestern Central Asian Orogenic Belt. Lithos, 126(3/4): 321-340. https://doi.org/10.1016/j.lithos.2011.07.015
      Long, L. L., Gao, J., Wang, J. B., et al., 2008. Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China: Examples from the Heiyingshan and Laohutai Plutons. Acta Geologica Sinica(English Edition), 82(2): 415-424. https://doi.org/10.1111/j.1755-6724.2008.tb00592.x
      Ludwig, K. R., 2003. Mathematical-Statistical Treatment of Data and Errors for 230Th Geochronology. Reviews in Mineralogy and Geochemistry, 52(1): 631-656. https://doi.org/10.2113/0520631
      Ma, X. X., Shu, L. S., Meert, J. G., 2015. Early Permian Slab Breakoff in the Chinese Tianshan Belt Inferred from the Post-Collisional Granitoids. Gondwana Research, 27(1): 228-243. https://doi.org/10.1016/j.gr.2013.09.018
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Niu, X.L., Liu, F., Feng, G.Y., et al., 2018. Discovery and Significance of Early Silurian Andesites in Wuwamen Area, Southern Margin of Central Tianshan Block. Earth Science, 43(4): 1350-1366(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804027
      Patiño Douce, A. E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Qi, L., Hu, J., Grégoire, D.C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507-513. https://doi.org/10.1016/s0039-9140(99)00318-5
      Sang, M., Xiao, W. J., Orozbaev, R., et al., 2018. Structural Styles and Zircon Ages of the South Tianshan Accretionary Complex, Atbashi Ridge, Kyrgyzstan: Insights for the Anatomy of Ocean Plate Stratigraphy and Accretionary Processes. Journal of Asian Earth Sciences, 153: 9-41. https://doi.org/10.1016/j.jseaes.2017.07.052
      Smith, M. E., Carroll, A. R., Jicha, B. R., et al., 2014. Paleogeographic Record of Eocene Farallon Slab Rollback beneath Western North America. Geology, 42(12): 1039-1042. https://doi.org/10.1130/g36025.1
      Tang, G. J., Chung, S. L., Hawkesworth, C. J., et al., 2017. Short Episodes of Crust Generation during Protracted Accretionary Processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464: 142-154. https://doi.org/10.1016/j.epsl.2017.02.022
      Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005.4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410-005-0025-8
      Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1/2/3/4): 359-372. https://doi.org/10.1016/j.lithos.2009.02.001
      Wei, G.J., Liang, X.R., Li, X.H., et al., 2002. Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC-ICPMS. Geochimica, 31(3): 295-299(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200203011
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 47(7): 745-765(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2004. Carboniferous Tianshan Igneous Megaprovince and Mantle Plume. Geological Bulletin of China, 23(9-10): 903-910(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409012
      Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
      Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
      Xie, L.W., Zhang, Y.B., Zhang, H.H., et al., 2008. In Situ, Simultaneous Determination of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircon and Baddeleyite. Chinese Science Bulletin, 53(2):220-228(in Chinese). doi: 10.1360/csb2008-53-2-220
      Xu, Y. G., Wei, X., Luo, Z. Y., et al., 2014. The Early Permian Tarim Large Igneous Province: Main Characteristics and a Plume Incubation Model. Lithos, 204: 20-35. https://doi.org/10.1016/j.lithos.2014.02.015
      Xu, Y.G., Chung, S.L., 2001. The Emeishan Large Igneous Province: Evidence for Mantle Plume Activity and Melting Conditions. Geochimica, 30(1): 1-9(in Chinese with English abstract).
      Yin, J.Y., Chen, W., Xiao, W.J., et al., 2015. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Dark Dykes in Central Tianshan Block. Geological Bulletin of China, 34(8): 1470-1481(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201508007
      Yin, J. Y., Chen, W., Xiao, W. J., et al., 2016. Late Carboniferous Adakitic Granodiorites in the Qiongkusitai Area, Western Tianshan, NW China: Implications for Partial Melting of Lower Crust in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 124: 42-54. https://doi.org/10.1016/j.jseaes.2016.04.010
      Yuan, C., Sun, M., Wilde, S., et al., 2010. Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-off. Lithos, 119(3-4): 269-288. https://doi.org/10.1016/j.lithos.2010.07.004
      Zhu, Y. F., Zhang, L., Gu, L., et al., 2005. The Zircon SHRIMP Chronology and Trace Element Geochemistry of the Carboniferous Volcanic Rocks in Western Tianshan Mountains. Chinese Science Bulletin, 50(19): 2201-2212. https://doi.org/10.1360/03wd0154
      Zhu, Z.X., Li, J.Y., Dong, L.H., et al., 2009. Tectonic Framework and Tectonic Evolution of the Southern Tianshan, Xinjiang, China. Geological Bulletin of China, 28(12): 1863-1870(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200912018
      郭春涛, 高剑, 李忠, 2018.塔里木盆地西北缘四石厂地区下二叠统沉积与物源记录及其反映的构造演化.地球科学, 43(11): 4149-4168. http://d.old.wanfangdata.com.cn/Periodical/dqkx201811030
      黄河, 张招崇, 张东阳, 等, 2011.中国南天山晚石炭世一早二叠世花岗质侵入岩的岩石成因与地壳增生.地质学报, 85(8): 1305-1333. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201108006
      姜常义, 穆艳梅, 白开寅, 等, 1999.南天山花岗岩类的年代学、岩石学、地球化学及其构造环境.岩石学报, 15(2): 298-308. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199902017
      李锦轶, 何国琦, 徐新, 等, 2006.新疆北部及邻区地壳构造格架及其形成过程的初步探讨.地质学报, 80(1): 148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017
      李强, 张立飞, 2004.新疆西南天山木扎尔特一带低压麻粒岩相变质作用P-T轨迹及其地质意义.岩石学报, 20(3): 583-594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403022
      李曰俊, 孙龙德, 吴浩若, 等, 2005.南天山西端乌帕塔尔坎群发现石炭-二叠纪放射虫化石.地质科学, 40(2): 220-226, 236. doi: 10.3321/j.issn:0563-5020.2005.02.006
      梁细荣, 韦刚健, 李献华, 等, 2002.多收集器等离子体质谱快速精确测定钕同位素比值.岩矿测试, 21(4): 247-251. doi: 10.3969/j.issn.0254-5357.2002.04.002
      牛晓露, 刘飞, 冯光英, 等, 2018.中天山南缘乌瓦门早志留世安第斯型安山岩的发现及意义.地球科学, 43(4): 1350-1366. doi: 10.3799/dqkx.2018.725
      韦刚健, 梁细荣, 李献华, 等, 2002. (LP)MCICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3): 295-299. doi: 10.3321/j.issn:0379-1726.2002.03.011
      吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学:地球科学, 47(7): 745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      夏林圻, 夏祖春, 徐学义, 等, 2004.天山石炭纪大火成岩省与地幔柱.地质通报, 23(9-10): 903-910. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409012
      谢烈文, 张艳斌, 张辉煌, 等, 2008.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定.科学通报, 53(2): 220-228. doi: 10.3321/j.issn:0023-074X.2008.02.013
      徐义刚, 钟孙霖, 2001.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件.地球化学, 30(1): 1-9. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201602010
      尹继元, 陈文, 肖文交, 等, 2015.中天山地块暗色岩墙LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征.地质通报, 34(8): 1470-1481. doi: 10.3969/j.issn.1671-2552.2015.08.007
      朱志新, 李锦轶, 董莲慧, 等, 2009.新疆南天山构造格架及构造演化.地质通报, 28(12): 1863-1870. doi: 10.3969/j.issn.1671-2552.2009.12.018
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (5277) PDF downloads(119) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return