• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 9
    Sep.  2019
    Turn off MathJax
    Article Contents
    Zhang Shuhao, Wu Guang, 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134. doi: 10.3799/dqkx.2019.081
    Citation: Zhang Shuhao, Wu Guang, 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134. doi: 10.3799/dqkx.2019.081

    Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS

    doi: 10.3799/dqkx.2019.081
    • Received Date: 2019-01-28
    • Publish Date: 2019-09-15
    • Nowadays models extensively used in GIS for debris-flow susceptibility (DFS) assessment remain obviously inadequate. In models based on classical statistical theory (e.g. information value, weight of evidence, and certainty factors), the independence between debris-flow conditioning factors is necessary, and the weight of these factors depends on the classification method. The linear machine learning may fail in nonlinear classification problems, whereas hyper-parameter tuning of usual nonlinear techniques is always difficult. Random forest (RF) is capable of resolving the most of problems of these usual models, but have hardly been applied in DFS assessment. This article aims to investigate the DFS assessment of RF and evaluate its reliability, using 4 models with the hyper-parameters tuning of Bayesian optimization, random forest (RF), linear support vector machine (LSVM), radial basis function-support vector machine (RBF-SVM), and quadratic discriminant analysis (QDA), and 26 conditioning factors. A modified five-fold cross-validation method is adopted to evaluate DFS assessment firstly, and then the rank of the relative weight of RF and Monte Carlo method are used respectively, to investigate the reliability of DFS assessment under the different combinations of debris-flow conditioning factors or the random sample split. Results demonstrate that 21 out of 26 debris-flow conditioning factors indicate the difference of the environments with different debris-flow rates. Relative weight rank of RF, can effectively determine the local optimal combination of factors for the 4 models. The uncertainty of susceptibility assessment resulting from the random sample split is most significant in the medium susceptibility zone (0.4~0.6), and can be reduced by increasing the proportion of the model building sample and improving the susceptibility model. The prediction performance of RF is:AUC=0.86, overall accuracy=0.79, F1 score=0.66 and brier score=0.14. And their reliability is optimal in all these 4 models. Therefore, RF can be a superior model for quantitative DFS assessment.

       

    • loading
    • Agterberg, F. P., Cheng, Q. M., 2002. Conditional Independence Test for Weights-of-Evidence Modeling. Natural Resources Research, 11(4):249-255. https://doi.org/10.1023/A:1021193827501
      Alin, A., 2010. Multicollinearity. Wiley Interdisciplinary Reviews:Computational Statistics, 2(3):370-374. https://doi.org/10.1002/wics.84
      Birolini, A., 2017. Reliability Engineering:Theory and Practice. Springer, Heidelberg.
      Breiman, L., 2001. Random Forests. Machine learning, 45(1):5-32. https://doi.org/10.1023/A:1010933404324
      CDATA[Brier, G. W., 1950. Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review, 78(1):1-3. https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2 doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
      Chen, C. Y., Yu, F. C., 2011. Morphometric Analysis of Debris Flows and Their Source Areas Using GIS. Geomorphology, 129(3-4):387-397. https://doi.org/10.1016/j.geomorph.2011.03.002
      Chen, J., Li, Y., Zhou, W., et al., 2017. Debris-Flow Susceptibility Assessment Model and Its Application in Semiarid Mountainous Areas of the Southeastern Tibetan Plateau. Natural Hazards Review, 18(2):05016005.https://doi.org/10.1061/(asce)nh.1527-6996.0000229 doi: 10.1061/(ASCE)NH.1527-6996.0000229
      Chevalier, G. G., Medina, V., Hürlimann, M., et al., 2013.Debris-Flow Susceptibility Analysis Using Fluvio-Morphological Parameters and Data Mining:Application to the Central-Eastern Pyrenees. Natural Hazards, 67(2):213-238. https://doi.org/10.1007/s11069-013-0568-3
      Cortes, C., Vapnik, V., 1995. Support-Vector Networks.Machine Learning, 20(3):273-297. https://doi.org/10.1007/bf00994018 http://d.old.wanfangdata.com.cn/Periodical/hwyhmb200803006
      Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., et al., 2013. Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya. Natural Hazards, 65(1):135-165. https://doi.org/10.1007/s11069-012-0347-6
      Eker, A. M., Dikmen, M., Cambazoğlu, S., et al., 2015.Evaluation and Comparison of Landslide Susceptibility Mapping Methods:A Case Study for the Ulus District, Bartın, Northern Turkey. International Journal of Geographical Information Science, 29(1):132-158. https://doi.org/10.1080/13658816.2014.953164
      Fernández-Delgado, M., Cernadas, E., Barro, S., et al., 2014. Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? The Journal of Machine Learning Research, 15(1):3133-3181. http://connection.ebscohost.com/c/articles/99397983/do-we-need-hundreds-classifiers-solve-real-world-classification-problems
      Frattini, P., Crosta, G., Carrara, A., 2010. Techniques for Evaluating the Performance of Landslide Susceptibility Models. Engineering Geology, 111(1-4):62-72. https://doi.org/10.1016/j.enggeo.2009.12.004
      Guzzetti, F., Carrara, A., Cardinali, M., et al., 1999. Landslide Hazard Evaluation:A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology, 31(1-4):181-216.https://doi.org/10.1016/s0169-555x(99)00078-1 doi: 10.1016/S0169-555X(99)00078-1
      Henrique, G.M., Ronald, L.B., Robert, R.W., et al., 2013.Effect of Topographic Characteristics on Compound Topographic Index for Identification of Gully Channel Initiation Locations. Transactions of the ASABE, 56(2):523-537. https://doi.org/10.13031/2013.42673
      Hu, K.H., Cui, P., Han, Y.S., et al., 2012.Susceptibility Mapping of Landslides and Debris Flows in 2008 Wenchuan Earthquake by Using Cluster Analysis and Maximum Likelihood Classification Methods. Science of Soil and Water Conservation, 10(1):12-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgstbckx201201003
      Huang, F.M., Wang, Y., Dong, Z.L., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2):664-676(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201902024
      Huang, F. M., Yin, K. L., Yang, B. B., et al., 2018. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model. Earth Science, 43(3):887-898 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803017
      Huang, R.Q., Qi, S.W., 2017. Engineering Geology:Review and Prospect of Past Ten Years in China. Journal of Engineering Geology, 25(2):257-276 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201702001.htm
      Hungr, O., Evans, S. G., Bovis, M. J., et al., 2001. A Review of the Classification of Landslides of the Flow Type. Environmental & Engineering Geoscience, 7(3):221-238. https://doi.org/10.2113/gseegeosci.7.3.221
      Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2):167-194. https://doi.org/10.1007/s10346-013-0436-y
      Kritikos, T., Davies, T., 2015. Assessment of Rainfall-Generated Shallow Landslide/Debris-Flow Susceptibility and Runout Using a GIS-Based Approach:Application to Western Southern Alps of New Zealand. Landslides, 12(6):1051-1075. https://doi.org/10.1007/s10346-014-0533-6
      Kursa, M. B., Rudnicki, W. R., 2010. Feature Selection with the Boruta Package. Journal of Statistical Software, 36(11):1-13. https://doi.org/10.18637/jss.v036.i11 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5b68996e67abc5d5ed2df21ba5a5de9d
      Li, F., Mei, H.B., Wang, W.S., et al., 2017. Rainfall-Induced Meteorological Early Warning of Geo-Hazards Model:Application to the Monitoring Demonstration Area in Honghe Prefecture, Yunnan Province.Earth Science, 42(9):1637-1646 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201709016.htm
      Li, M. M., Wu, B. F., Yan, C. Z., et al., 2004. Estimation of Vegetation Fraction in the Upper Basin of Miyun Reservoir by Remote Sensing. Resources Science, 26(4):153-159 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZY200404022.htm
      Niculescu-Mizil, A., Caruana, R., 2005. Predicting Good Probabilities with Supervised Learning. In: Stefan, W., ed., Proceedings of the 22nd International Conference on Machine Learning. Association for Computing Machinery, Bonn, 625-632.
      Oh, H. J., Lee, S., 2017. Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree. Applied Sciences, 7(10):1-14. https://doi.org/10.3390/app7101000
      Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011.Scikit-Learn:Machine Learning in Python. Journal of Machine Learning Research, 12(10):2825-2830. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1309.0238
      Pradhan, B., 2013. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS. Computers & Geosciences, 51:350-365. https://doi.org/10.1016/j.cageo.2012.08.023 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c652c43324bfb4b73bd38d99709fd144
      Reichenbach, P., Rossi, M., Malamud, B. D., et al., 2018.A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180:60-91. https://doi.org/10.1016/j.earscirev.2018.03.001
      Rossi, M., Guzzetti, F., Reichenbach, P., et al., 2010. Optimal Landslide Susceptibility Zonation Based on Multiple Forecasts. Geomorphology, 114(3):129-142. https://doi.org/10.1016/j.geomorph.2009.06.020
      Shortliffe, E. H., Buchanan, B. G., 1975. A Model of Inexact Reasoning in Medicine. Mathematical Biosciences, 23(3-4):351-379. https://doi.org/10.1016/0025-5564(75)90047-4
      Sodnik, J., Mikoš, M., 2006. Estimation of Magnitudes of Debris Flows in Selected Torrential Watersheds in Slovenia. Acta Geographica Slovenica, 46(1):93-123.https://doi.org/10.3986/ags46104 doi: 10.3986/AGS46104
      Tang, G. A., Yang, X., 2012. Experimental Course on Spatial Analysis of Geographic Information System Arcgis.Science Press, Beijing(in Chinese).
      Yue, X.L., Huang, M., Xu, Q.Y., et al., 2015. The Susceptibility Assessment of Debris Flow in Karst Region of Guizhou Province. Journal of Geo-Information Science, 17(11):1395-1403 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201511015
      Zhang, S.H., Wu, G., Zhang, Q., et al., 2018. Debris-Flow Susceptibility Assessment Using the Characteristic Factors of a Catchment. Hydrogeology & Engineering Geology, 45(2):142-149 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201802022
      Zhao, H., Song, E. X., 2011. Improved Information Value Model and Its Application in the Spatial Prediction of Landslides. Journal of Civil, Architectural & Environmental Engineering, 33(3):38-44, 51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JIAN201103008.htm
      Zio, E., 2013. The Monte Carlo Simulation Method for System Reliability and Risk Analysis. Springer, London. doi: 10.1007%2F978-1-4471-4588-2
      胡凯衡, 崔鹏, 韩用顺, 等, 2012.基于聚类和最大似然法的汶川灾区泥石流滑坡易发性评价.中国水土保持科学, 10(1):12-18. doi: 10.3969/j.issn.1672-3007.2012.01.003
      黄发明, 汪洋, 董志良, 等, 2019.基于灰色关联度模型的区域滑坡敏感性评价.地球科学, 44(2):664-676. http://d.old.wanfangdata.com.cn/Periodical/dqkx201902024
      黄发明, 殷坤龙, 杨背背, 等, 2018.基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测.地球科学, 43(3):887-898. http://d.old.wanfangdata.com.cn/Periodical/dqkx201803017
      黄润秋, 祁生文, 2017.工程地质:十年回顾与展望.工程地质学报, 25(2):257-276. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201501001
      李芳, 梅红波, 王伟森, 等, 2017.降雨诱发的地质灾害气象风险预警模型:以云南省红河州监测示范区为例.地球科学, 42(9):1637-1646. http://d.old.wanfangdata.com.cn/Periodical/dqkx201709016
      李苗苗, 吴炳方, 颜长珍, 等, 2004.密云水库上游植被覆盖度的遥感估算.资源科学, 26(4):153-159. doi: 10.3321/j.issn:1007-7588.2004.04.022
      汤国安, 杨昕, 2012.Arcgis地理信息系统空间分析实验教程.北京:科学出版社.
      岳溪柳, 黄玫, 徐庆勇, 等, 2015.贵州省喀斯特地区泥石流灾害易发性评价.地球信息科学学报, 17(11):1395-1403. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201511015
      张书豪, 吴光, 张乔, 等, 2018.基于子流域特征的泥石流易发性评价.水文地质工程地质, 45(2):142-149. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201802022
      赵衡, 宋二祥, 2011.滑坡空间预测中信息量模型的改进及应用.土木建筑与环境工程, 33(3):38-44, 51. http://d.old.wanfangdata.com.cn/Periodical/cqjzdxxb201103007
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(5)

      Article views (5051) PDF downloads(107) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return