• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 11
    Nov.  2019
    Turn off MathJax
    Article Contents
    Wu Zhongrui, He Sheng, He Xipeng, Zhai Gangyi, Xia Xianghua, Yang Rui, Dong Tian, Peng Nüjia, 2019. Pore Structure Characteristics and Comparisons of Upper Permian Longtan and Dalong Formation Transitional Facies Shale in Xiangzhong-Lianyuan Depression. Earth Science, 44(11): 3757-3772. doi: 10.3799/dqkx.2019.084
    Citation: Wu Zhongrui, He Sheng, He Xipeng, Zhai Gangyi, Xia Xianghua, Yang Rui, Dong Tian, Peng Nüjia, 2019. Pore Structure Characteristics and Comparisons of Upper Permian Longtan and Dalong Formation Transitional Facies Shale in Xiangzhong-Lianyuan Depression. Earth Science, 44(11): 3757-3772. doi: 10.3799/dqkx.2019.084

    Pore Structure Characteristics and Comparisons of Upper Permian Longtan and Dalong Formation Transitional Facies Shale in Xiangzhong-Lianyuan Depression

    doi: 10.3799/dqkx.2019.084
    • Received Date: 2019-04-17
    • Publish Date: 2019-11-15
    • Taking transitional facies shale of Permian Longtan and Dalong Formations as the research object, 12 typical drilling core shale samples in Xiangzhong-Lianyuan depression were selected for tests including organic carbon content, rock-eval, X-ray diffraction, density porosity, high-pressure mercury intrusion, CO2/N2 adsorption while using field emission scanning electron microscopy(FE-SEM) to observe pore characteristics. In this study it focuses on the development of nano-microscale pore, pore structure characteristics and main control factors of the transitional facies shale through the combinations of qualitative description and quantitative measure method. The results show that the organic carbon content of Longtan and Dalong Formation shales is high, the degree of thermal evolution is in the early stage of generating condensate oil and wet gas, corresponding to Ro of 1.22%-1.43%; pore types of shale are mainly intergranular pores, intragranular pores, organic pores and micro-nanoscale cracks. There are differences in the pore morphology, pore size and control factors between Longtan and Dalong Formations. In Longtan Formation, N2 adsorption hysteresis loop is wide and the shapes of organic poresare mostly round and elliptic with larger pore diameter. The N2 adsorption hysteresis loop of the Dalong Formation is narrow and the shapes of the organic poresare irregular with small pore diameter. There is a positive correlation between TOC and clay mineral in both Longtan and Dalong Formation shales. The volume of micropore in both Longtan and Dalong Formation shales is positively correlated with TOC and clay mineral. The mesopore+macropore pore volume of Longtan Formation shale has a position linear relationship with TOC and clay mineral, but is negatively correlated with quartz+feldspar. Carbonate mineral in Dalong Formation has a significant influence on its pore structure, and the relationship of mesopore+macropore pore volume with TOC-clay mineral and quartz+feldspar in Dalong Formation shale is not obvious.

       

    • loading
    • Bao, S.J., Lin, T., Nie, H.K., et al., 2016. Preliminary Study of the Transitional Facies Shale Gas Reservoir Characteristics: Taking Permian in the Xiangzhong Depression as an Example. Earth Science Frontiers, 23(1): 44-53 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601004
      Cao, T.T., Song, Z.G., Luo, H.Y., et al., 2016a. Pore System Characteristics of the Permian Transitional Shale Reservoir in the Lower Yangtze Region, China. Journal of Natural Gas Geoscience, 1(5):383-395. https://doi.org/ 10.1016/j.jnggs.2016.11.004
      Cao, T. T., Song, Z. G., Wang, S. B., et al., 2016b. Characterization of Pore Structure and Fractal Dimension of Paleozoic Shales from the Northeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 35: 882-895. https://doi.org/10.1016/j.jngse.2016.09.022
      Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. https://doi.org/10.1306/10171111052
      Gu, Z.X., Peng, Y.M., He, Y.B., et al., 2015. Geological Conditions of Permian Sea-Land Transitional Facies Shale Gas in the Xiangzhong Depression. Geology in China, 42(1): 288-299 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi2015010023
      Guo, T.L., 2016. Key Geological Issues and Main Controls on Accumulation and Enrichment of Chinese Shale Gas. Petroleum Exploration and Development, 43(3): 317-326 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201603001
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
      Jing, L., Pan, J.P., Xu, G.S., et al., 2012. Lithofacies- Paleogeography Characteristics of the Marine Shale Series of Strata in the Xiangzhong Depression, Hunan, China. Journal of Chengdu University of Technology(Science & Technology Edition), 39(2):215-222(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201202015
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      Ma, Y.S., Cai, X.Y., Zhao, P.R., 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4): 561-574 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003
      Peng, N.J., He, S., Hao, F., et al., 2017. The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan. Earth Science, 42(7): 1134-1146 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707010
      Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87-125. https://doi.org/10.1306/09040707048
      Slatt, R.M., O'Brien, N.R., 2011. Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bulletin, 95(12): 2017-2030. https://doi.org/10.1306/03301110145
      Thommes, M., Kaneko, K., Neimark, A.V., et al., 2015.Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10): 1051-1069. https://doi.org/10.1515/pac-2014-1117
      Tian, H., Zhang, S.C., Liu, S.B., et al., 2012. Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods. Acta Petrolei Sinica, 33(3): 419-427 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203011
      Tian, W., Peng, Z.Q., Bai, Y.S., et al., 2019. Study on Reservoir Characteristics and Exploration Potential of Lower Carboniferous Transitional Facies Shale Gas in Lianyuan Sag, Central Hunan. Earth Science, 44(11):3794-3811 (in Chinese with English abstract). https://doi.org/ 10.3799/dqkx.2018.291
      Xiao, Z. H., Tan, J. Q., Ju, Y. W., et al., 2018. Natural Gas Potential of Carboniferous and Permian Transitional Shales in Central Hunan, South China. Journal of Natural Gas Science and Engineering, 55: 520-533. https://doi.org/10.1016/j.jngse.2018.05.024
      Yang, R., He, S., Hu, Q. H., et al., 2016a. Pore Characterization and Methane Sorption Capacity of Over-Mature Organic-Rich Wufeng and Longmaxi Shales in the Southeast Sichuan Basin, China. Marine and Petroleum Geology, 77: 247-261. https://doi.org/10.1016/j.marpetgeo.2016.06.001
      Yang, R., He, S., Yi, J.Z., et al., 2016b. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
      Yang, W., He, S., Zhai, G., et al., 2019. Shale-Gas Accumulation and Pore Structure Characteristics in the Lower Cambrian Niutitang Shales, Cen-Gong Block, South China. Australian Journal of Earth Sciences, 66(2): 289-303. https://doi.org/10.1080/08120099.2018.1544172
      Zhang, C.L., Tang, S.H., Fan, E.P., et al., 2014. Shale Gas Reservoir Characteristics of Longtan Formation in Lianyuan Depression. Journal of Oil and Gas Technology, 36(5): 32-36 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JHSX201405007.htm
      Zhang, H., 2003. Study on Coal in China by Scan Electron Microscope. Geological Publishing House, Beijing (in Chinese).
      Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 166-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm
      包书景, 林拓, 聂海宽, 等, 2016.海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例.地学前缘, 23(1): 44-53. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601004
      顾志翔, 彭勇民, 何幼斌, 等, 2015.湘中坳陷二叠系海陆过渡相页岩气地质条件.中国地质, 42(1): 288-299. doi: 10.3969/j.issn.1000-3657.2015.01.023
      郭彤楼, 2016.中国式页岩气关键地质问题与成藏富集主控因素.石油勘探与开发, 43(3): 317-326. http://d.old.wanfangdata.com.cn/Periodical/syktykf201603001
      敬乐, 潘继平, 徐国盛, 等, 2012.湘中拗陷海相页岩层系岩相古地理特征.成都理工大学学报(自然科学版), 39(2):215-222. doi: 10.3969/j.issn.1671-9727.2012.02.015
      马永生, 蔡勋育, 赵培荣, 2018.中国页岩气勘探开发理论认识与实践.石油勘探与开发, 45(4): 561-574. http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003
      彭女佳, 何生, 郝芳, 等, 2017.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性.地球科学, 42(7): 1134-1146. doi: 10.3799/dqkx.2017.092
      田华, 张水昌, 柳少波, 等, 2012.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报, 33(3): 419-427. http://d.old.wanfangdata.com.cn/Periodical/syxb201203011
      田巍, 彭中勤, 白云山, 等, 2019.湘中涟源凹陷石炭系海陆过渡相测水组页岩气成藏特征及勘探潜力.地球科学, 44(11):3794-3811. doi: 10.3799/dqkx.2018.291
      张成龙, 唐书恒, 范二平, 等, 2014.涟源凹陷龙潭组页岩气储层特征分析.石油天然气学报, 36(5): 32-36. doi: 10.3969/j.issn.1000-9752.2014.05.007
      张慧, 2003.中国煤的扫描电子显微镜研究.北京:地质出版社.
      邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二).石油勘探与开发, 43(2): 166-178. doi: 10.11698/PED.2016.02.02
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(5)

      Article views (2990) PDF downloads(64) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return