• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 4
    Apr.  2020
    Turn off MathJax
    Article Contents
    Gong Jingjing, Yang Jianzhou, Hu Shuqi, Ma Shengming, 2020. Application of Geochemical Data in Analysis of Geological Background and Metallogenic Conditions: A Case Study of Northwest China. Earth Science, 45(4): 1388-1402. doi: 10.3799/dqkx.2019.094
    Citation: Gong Jingjing, Yang Jianzhou, Hu Shuqi, Ma Shengming, 2020. Application of Geochemical Data in Analysis of Geological Background and Metallogenic Conditions: A Case Study of Northwest China. Earth Science, 45(4): 1388-1402. doi: 10.3799/dqkx.2019.094

    Application of Geochemical Data in Analysis of Geological Background and Metallogenic Conditions: A Case Study of Northwest China

    doi: 10.3799/dqkx.2019.094
    • Received Date: 2019-04-22
    • Publish Date: 2020-04-15
    • In most 1:50 000 geological and mineral surveys, geochemical surveys are conducted first and sampling density is higher than 8 samples/km2, with up to 38 geochemical indices being analyzed, because the main purpose is to identify "ore causing anomalies" and to facilitate mineral exploration. However, it has been found in previous studies that regional geochemical data directly reflect the chemical composition of surface materials, which contain more extensive geological information than mere anomalies related to mineralization. Based on 1:50 000 geochemical surveys of arid desert landscapes in Northwest China. Geological units in the working area and their geochemical characteristics were studied and identified in this study. Compared to 1:200 000 geological maps, the results of the PC analysis performed on clr-transformed 1:50 000 geochemical data show more details:(1) some geological units could be further divided into multiple sub-units; (2) some intrusive rocks could be divided by phases or lithofacies characteristics; (3) could provide clues for the classification of geological units. The results of this study have been successfully used in the follow-up 1:50 000 geological mapping and verification of the final 1:50 000 geological map. Furthermore, the division of geological units and the identification of geochemical characteristics could provide information for excluding the geochemical anomalies which are irrelevant to mineralization.

       

    • loading
    • Aitchison, J., 1986.Statistical Analysis of Compositional Data. Chapman and Hall, London-New York, 416. http://doi.wiley.com/10.1002/bimj.4710300705
      Ao, S.J., Xiao, W.J., Han, C.M., et al., 2012.Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China:Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4):606-625. https://doi.org/10.1017/s0016756811000884 doi: 10.1017/S0016756811000884
      Bradshaw, P.M.D., Lett, R.E.W., 1980.Geochemical Exploration for Uranium Using Soils. Journal of Geochemical Exploration, 13(2-3):305-319. https://doi.org/10.1016/0375-6742(80)90011-4
      Buccianti, A., Grunsky, E.C., 2014.Compositional Data Analysis in Geochemistry:Are We Sure to See what Really Occurs during Natural Processes?.Journal of Geochemical Exploration, 141:1-5. https://doi.org/10.1016/j.gexplo.2014.03.022
      Carranza, E.J.M., 2011.Analysis and Mapping of Geochemical Anomalies Using Logratio-Transformed Stream Sediment Data with Censored Values. Journal of Geochemical Exploration, 110(2):167-185. https://doi.org/10.1016/j.gexplo.2011.05.007
      Chayes, F., Trochimczyk, J., 1978.An Effect of Closure on the Structure of Principal Components. Journal of the International Association for Mathematical Geology, 10(4):323-333. https://doi.org/10.1007/bf01031737 doi: 10.1007/BF01031737
      Chork, C.Y., 1990.Unmasking Multivariate Anomalous Observations in Exploration Geochemical Data from Sheeted-Vein Tin Mineralization near Emmaville, N.S.W., Australia. Journal of Geochemical Exploration, 37(2):205-223. https://doi.org/10.1016/0375-6742(90)90027-8
      Egozcue, J.J., Pawlowsky-Glahn, V., 2005.Groups of Parts and Their Balances in Compositional Data Analysis. Mathematical Geology, 37(7):795-828. https://doi.org/10.1007/s11004-005-7381-9
      Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003.Isometric Logratio Transformations for Compositional Data Analysis. Mathematical Geology, 35(3):279-300. https://doi.org/10.1023/A:1023818214614 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aef9451dad86baecd99f49b41a583780
      Esbensen, K.H., Steenfelt, A., 1989.Geochemical Prospecting in Complex Sample Media-Multivariate Data Analysis of Indirect Observations (PLS-Regression between Modal Mineralogy and Geochemistry). Journal of Geochemical Exploration, 32(1-3):345-347. https://doi.org/10.1016/0375-6742(89)90073-3
      Fan, H.K., Wen, Y.W., Jiang, X.Y., et al., 2008.Geochemical Debris Exploration Method and Its Effect in the Semi-Arid Desert and Grassland Area, East-Central Inner Mongolia.Geology and Prospecting, 44(5):64-69(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=63b73490e2666a09d73d407dab6a1c32&encoded=0&v=paper_preview&mkt=zh-cn
      Filzmoser, P., 2016. Identification of Multivariate Outliers:A Performance Study. Austrian Journal of Statistics, 34(2):127. https://doi.org/10.17713/ajs.v34i2.406
      Filzmoser, P., Hron, K., 2009. Correlation Analysis for Compositional Data. Mathematical Geosciences, 41(8):905-919. https://doi.org/10.1007/s11004-008-9196-y
      Filzmoser, P., Hron, K., Reimann, C., 2010.The Bivariate Statistical Analysis of Environmental (Compositional) Data. Science of the Total Environment, 408(19):4230-4238. https://doi.org/10.1016/j.scitotenv.2010.05.011 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64a3cde671fdbc9c60aff884df1c8620
      Govett, G.J.S., 1983.Rock Geochemistry in Mineral Exploration. Elsevier Scientific Publishing Company, New York.
      Grunsky, E.C., de Caritat, P., Mueller, U.A., 2017.Using Surface Regolith Geochemistry to Map the Major Crustal Blocks of the Australian Continent. Gondwana Research, 46:227-239. https://doi.org/10.1016/j.gr.2017.02.011
      Grunsky, E.C., Mueller, U.A., Corrigan, D., 2014.A Study of the Lake Sediment Geochemistry of the Melville Peninsula Using Multivariate Methods:Applications for Predictive Geological Mapping. Journal of Geochemical Exploration, 141:15-41. https://doi.org/10.1016/j.gexplo.2013.07.013
      Grunsky, E.C., 2010.The Interpretation of Geochemical Survey Data. Geochemistry:Exploration, Environment, Analysis, 10(1):27-74. https://doi.org/10.1144/1467-7873/09-210
      Harris, J.R., Grunsky, E.C., 2015.Predictive Lithological Mapping of Canada's North Using Random Forest Classification Applied to Geophysical and Geochemical Data. Computers & Geosciences, 80:9-25. https://doi.org/10.1016/j.cageo.2015.03.013 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd214107d50e9bfd6d49a75911dd3630
      Hron, K., Templ, M., Filzmoser, P., 2010.Imputation of Missing Values for Compositional Data Using Classical and Robust Methods. Computational Statistics & Data Analysis, 54(12):3095-3107. https://doi.org/10.1016/j.csda.2009.11.023 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c491c98e0ae3ba9f54f5b3420f1e857a
      Kang, M., Cen, K., Wu, Y.B., et al., 2004.1:50 000 Geochemical Prospecting Methods and Techniques in Gobi Desert Landscape in the Beishan Area, Northwestern China. Geology and Prospecting, 40(3):64-68(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_312d799abfb4a74ea247d6e73a15df1a
      Liu, X.C., Wang, W.L., Pei, Y.R., et al., 2017.Quantitative Analysis and Interpretation of the Geochemical Data of the Stream Sediment in Duolong Mineral District, Tibet, China.Journal of Geomechanics, 23(5):695-706(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201705007
      Loughlin, W.P., 1991.Principal Component Analysis for Alteration Mapping. Photogrammetric Engineering and Remote Sensing, (57):1163-1169. http://cn.bing.com/academic/profile?id=28fa28cdcc527c83495be63802223b42&encoded=0&v=paper_preview&mkt=zh-cn
      Martín-Fernández, J.A., Hron, K., Templ, M., et al., 2012.Model-Based Replacement of Rounded Zeros in Compositional Data:Classical and Robust Approaches. Computational Statistics & Data Analysis, 56(9):2688-2704. https://doi.org/10.1016/j.csda.2012.02.012 http://cn.bing.com/academic/profile?id=fdaffd71876c0374c7497ceb3b70f4a1&encoded=0&v=paper_preview&mkt=zh-cn
      McKinley, J.M., Hron, K., Grunsky, E.C., et al., 2016.The Single Component Geochemical Map:Fact or Fiction?.Journal of Geochemical Exploration, 162:16-28. https://doi.org/10.1016/j.gexplo.2015.12.005
      McNeal, J.M., Lee, D.E., Millard, H.T. Jr, 1981.The Distribution of Uranium and Thorium in Granitic Rocks of the Basin and Range Province, Western United States. Journal of Geochemical Exploration, 14:25-40. https://doi.org/10.1016/0375-6742(81)90101-1
      Ministry of Land and Resources of the People's Republic of China, 2015, Specification of Geochemical Reconnaissance Survey(1:50 000). Geological Publishing House, Beijing.
      Murali, A.V., Parthasarathy, R., Mahadevan, T.M., et al., 1983.Trace Element Characteristics, REE Patterns and Partition Coefficients of Zircons from Different Geological Environments-A Case Study on Indian Zircons. Geochimica et Cosmochimica Acta, 47(11):2047-2052. https://doi.org/10.1016/0016-7037(83)90220-x doi: 10.1016/0016-7037(83)90220-X
      Reimann, C., Filzmoser, P., Fabian, K., et al., 2012. The Concept of Compositional Data Analysis in Practice-Total Major Element Concentrations in Agricultural and Grazing Land Soils of Europe. Science of the Total Environment, 426:196-210. https://doi.org/10.1016/j.scitotenv.2012.02.032
      Sadeghi, M., Billay, A., Carranza, E.J.M., 2015.Analysis and Mapping of Soil Geochemical Anomalies:Implications for Bedrock Mapping and Gold Exploration in Giyani Area, South Africa. Journal of Geochemical Exploration, 154:180-193. https://doi.org/10.1016/j.gexplo.2014.11.018
      Shepherd, A., Harvey, P.K., Leake, R.C., 1987.The Geochemistry of Residual Soils as an Aid to Geological Mapping:A Statistical Approach. Journal of Geochemical Exploration, 29(1-3):317-331. https://doi.org/10.1016/0375-6742(87)90084-7
      Shi, Y.X., Hao, L.B., Lu, J.L., et al., 2008.Application of Factor Classification in Geological Mapping in Tahe Area, Heilongjiang Province. Journal of Jilin University(Earth Science Edition), 38(5):899-903(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200805030
      Steenfelt, A., 1987.Geochemical Mapping and Prospecting in Greenland-A Review of Results and Experience. Journal of Geochemical Exploration, 29(1-3):183-205. https://doi.org/10.1016/0375-6742(87)90077-x doi: 10.1016/0375-6742(87)90077-X
      Tingley, J.V., Castor, S.B., 1999.Stream Sediment Exploration for Gold and Silver in Nevada-Application of an Old Prospecting Method Using Modern Analytical Techniques. Journal of Geochemical Exploration, 66(1-2):1-16. https://doi.org/10.1016/s0375-6742(99)00013-8 doi: 10.1016/S0375-6742(99)00013-8
      Tukey, J.W., 1977.Exploratory Data Analysis. Addison-Wesley, Massachusetts.
      Wan, H.Q., Sun, H., Liu, H.Y., et al., 2015.Lithium Isotopic Geochemistry in Subduction Zones:Retrospects and Prospects. Earth Science Frontiers, 22(5):29-43(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201505002
      Wang, W.L., Zhao, J., Cheng, Q.M., 2014.Mapping of Fe Mineralization-Associated Geochemical Signatures Using Logratio Transformed Stream Sediment Geochemical Data in Eastern Tianshan, China. Journal of Geochemical Exploration, 141:6-14. https://doi.org/10.1016/j.gexplo.2013.11.008
      Wang, Z.Y., Dong, Y.N., Zuo, R.G., 2019.Mapping Geochemical Anomalies Related to Fe-Polymetallic Mineralization Using the Maximum Margin Metric Learning Method. Ore Geology Reviews, 107:258-265. https://doi.org/10.1016/j.oregeorev.2019.02.027 http://cn.bing.com/academic/profile?id=2cdd896c14134332c101176dcde66179&encoded=0&v=paper_preview&mkt=zh-cn
      Wang, J., Zuo, R.G., 2019.Recognizing Geochemical Anomalies via Stochastic Simulation-Based Local Singularity Analysis. Journal of Geochemical Exploration, 198:29-40. https://doi.org/10.1016/j.gexplo.2018.12.012
      Wu, J., Bu, J.J., Xie, G.G., et al., 2016.Application of Regional Geochemical Data in Geological Mapping in Strongly Weathered Area in Southern China.Journal of Geomechanics, 22(4):955-966(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201604013
      Xiang, Y.C., Gong, Q.J., Liu, R.M., et al., 2014.Model and Application of Deducing Geological Body on Regional Geochemical Survey Data:A Case Study on Granitic Intrusions in China. Acta Petrologica Sinica, 30(9):2609-2618(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201409012
      Xiong, Y.H., Zuo, R.G., 2016.Recognition of Geochemical Anomalies Using a Deep Autoencoder Network. Computers & Geosciences, 86:75-82. https://doi.org/10.1016/j.cageo.2015.10.006 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f659583bb053f79afe258c22bcc05d8a
      Xiong, Y.H., Zuo, R.G., Carranza, E.J.M., 2018.Mapping Mineral Prospectivity through Big Data Analytics and a Deep Learning Algorithm. Ore Geology Reviews, 102:811-817. https://doi.org/10.1016/j.oregeorev.2018.10.006
      Xu, W., Xu, X. Y., Lu, J. C., et al., 2019.Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Science, 44(8):2775-2793 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201908021
      Yousefi, M., Carranza, E.J.M., Kamkar-Rouhani, A., 2013.Weighted Drainage Catchment Basin Mapping of Geochemical Anomalies Using Stream Sediment Data for Mineral Potential Modeling. Journal of Geochemical Exploration, 128:88-96. https://doi.org/10.1016/j.gexplo.2013.01.013
      Zeng, L., Cheng, L.L., Cheng, Q.M., et al., 2014.A Refinement of Lange's Plagioclase-Liquid Hygrometer/Thermometer Based on Quadratic Log-Contrast Models for Experiments with Mixtures. Journal of Geochemical Exploration, 141:89-99. https://doi.org/10.1016/j.gexplo.2013.12.008
      Zhao, J.N., Chen, S.Y., Zuo, R.G., 2017.Identification and Mapping of Lithogeochemical Signatures Using Staged Factor Analysis and Fractal/Multifractal Models. Geochemistry:Exploration, Environment, Analysis, 17(3):239-251. https://doi.org/10.1144/geochem2016-013
      Zhong, F.J., Pan, J.Y., Wu, J.H., et al., 2019. Petrogenesis and Its Relationship with Uranium Mineralization of Gabbro-Diorite in Changjiang Uranium Ore-Field, Northern Guangdong Province, China. Earth Science, 44(9):3042-3059 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201909018
      Zhou, D., 1998.Geological Compositional Data Analysis:Difficulties and Solutions.Earth Science, 23(2):41-46(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx199802009
      Zuo, R.G., 2017.Machine Learning of Mineralization-Related Geochemical Anomalies:A Review of Potential Methods. Natural Resources Research, 26(4):457-464. https://doi.org/10.1007/s11053-017-9345-4
      Zuo, R.G., Xia, Q.L., Wang, H.C., 2013.Compositional Data Analysis in the Study of Integrated Geochemical Anomalies Associated with Mineralization. Applied Geochemistry, 28:202-211. https://doi.org/10.1016/j.apgeochem.2012.10.031
      Zuo, R.G., Xiong, Y.H., 2018.Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods. Natural Resources Research, 27(1):5-13. https://doi.org/10.1007/s11053-017-9357-0
      Zuo, R.G., Xiong, Y.H., Wang, J., et al., 2019.Deep Learning and Its Application in Geochemical Mapping. Earth-Science Reviews, 192:1-14. https://doi.org/10.1016/j.earscirev.2019.02.023
      Zuo, R.G., Zhang, Z.J., Zhang, D.J., et al., 2015. Evaluation of Uncertainty in Mineral Prospectivity Mapping Due to Missing Evidence:A Case Study with Skarn-Type Fe Deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71:502-515. https://doi.org/10.1016/j.oregeorev.2014.09.024
      范红科, 温银维, 姜羡义, 等, 2008.内蒙古中东部半干旱荒漠草原景观区岩屑地球化学测量的方法技术及应用效果.地质与勘探, 44(5):64-69. http://d.old.wanfangdata.com.cn/Periodical/dzykt200805011
      康明, 岑况, 吴悦斌, 等, 2004.北山戈壁荒漠景观1:5万地球化学测量方法研究.地质与勘探, 40(3):64-68. doi: 10.3969/j.issn.0495-5331.2004.03.014
      刘向冲, 王文磊, 裴英茹, 等, 2017.西藏多龙矿集区水系沉积物地球化学数据定量分析与解释.地质力学学报, 23(5):695-706. doi: 10.3969/j.issn.1006-6616.2017.05.007
      时艳香, 郝立波, 陆继龙, 等, 2008.因子分类法在黑龙江塔河地区地质填图中的应用.吉林大学学报(地球科学版), 38(5):899-903. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200805030
      万红琼, 孙贺, 刘海洋, 等, 2015.俯冲带Li同位素地球化学:回顾与展望.地学前缘, 22(5):29-43. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505002
      吴俊, 卜建军, 谢国刚, 等, 2016.区域化探数据在华南强烈风化区地质填图中的应用.地质力学学报, 22(4):955-966. doi: 10.3969/j.issn.1006-6616.2016.04.013
      向运川, 龚庆杰, 刘荣梅, 等, 2014.区域地球化学推断地质体模型与应用——以花岗岩类侵入体为例.岩石学报, 30(9):2609-2618. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201409012
      许伟, 徐学义, 卢进才, 等, 2019.北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义.地球科学, 44(8):2775-2793. doi: 10.3799/dqkx.2019.048
      钟福军, 潘家永, 巫建华, 等, 2019.粤北长江铀矿田辉长闪长岩的岩石成因及其与铀成矿的关系.地球科学, 44(9):3042-3059. doi: 10.3799/dqkx.2017.592
      中华人民共和国国土资源部, 2015.地球化学普查规范(1:50 000).北京:地质出版社.
      周蒂, 1998.地质成分数据统计分析——困难和探索.地球科学, 23(2):41-46. http://www.earth-science.net/article/id/626
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (2601) PDF downloads(108) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return