Citation: | Zhang Chen, Zhou Shixin, Chen Ke, Li Jing, Chen Kefei, Zhang Yuhong, Li Pengpeng, Sun Zexiang, Fu Deliang, 2019. Impact on Microscopic Pore Structure and Adsorption Behavior of Carbon Dioxide on Shale under High Pressure Condition. Earth Science, 44(11): 3773-3782. doi: 10.3799/dqkx.2019.107 |
Alemu, B. L., Aagaard, P., Munz, I. A., et al., 2011. Caprock Interaction with CO2: A Laboratory Study of Reactivity of Shale with Supercritical CO2 and Brine. Applied Geochemistry, 26(12): 1975-1989. https://doi.org/10.1016/j.apgeochem.2011.06.028
|
Anggara, F., Sasaki, K., Rodrigues, S., et al., 2014. The Effect of Megascopic Texture on Swelling of a Low Rank Coal in Supercritical Carbon Dioxide. International Journal of Coal Geology, 125: 45-56. https://doi.org/10.1016/j.coal.2014.02.004
|
Ao, X., Lu, Y. Y., Tang, J. R., et al., 2017. Investigation on the Physics Structure and Chemical Properties of the Shale Treated by Supercritical CO2. Journal of CO2 Utilization, 20: 274-281. https://doi.org/10.1016/j.jcou.2017.05.028
|
Athy, L.F., 1930. Density, Porosity and Compaction of Sedimentary Rocks. AAPG Bulletin, 14(1): 1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6041494bd398fc31dace86cb77e1788
|
Brunauer, S., Deming, L. S., Deming, W. E., et al., 1940. On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7): 1723-1732. https://doi.org/10.1021/ja01864a025
|
Chong, L., Myshakin, E. M., 2018. Molecular Simulations of Competitive Adsorption of Carbon Dioxide–Methane Mixture on Illitic Clay Surfaces. Fluid Phase Equilibria, 472: 185-195. https://doi.org/10.1016/j.fluid.2018.05.019
|
Day, S., Fry, R., Sakurovs, R., 2008. Swelling of Australian Coals in Supercritical CO2. International Journal of Coal Geology, 74(1): 41-52. https://doi.org/10.1016/j.coal.2007.09.006
|
Do, D. D., Do, H. D., 2003. Pore Characterization of Carbonaceous Materials by DFT and GCMC Simulations: A Review. Adsorption Science & Technology, 21(5): 389-423. https://doi.org/10.1260/026361703769645753
|
Duan, S., Gu, M., Du, X. D., et al., 2016. Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale. Energy & Fuels, 30(3): 2248-2256. https://doi.org/10.1021/acs.energyfuels.5b02088
|
Gasparik, M., Ghanizadeh, A., Bertier, P., et al., 2012. High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands.Energy & Fuels, 26(8): 4995-5004. https://doi.org/10.1021/ef300405g
|
Gasparik, M., Rexer, T. F. T., Aplin, A. C., et al., 2014. First International Inter-Laboratory Comparison of High-Pressure CH4, CO2 and C2H6 Sorption Isotherms on Carbonaceous Shales. International Journal of Coal Geology, 132: 131-146. https://doi.org/10.1016/j.coal.2014.07.010
|
Guo, J.L., Li, Z.J., Zhang, Y.Y., et al., 2015. An Experimental Study of the Extraction of Organic Carbon from Shale during the CO2-Water-Rock Interaction Related to Geological CO2 Storage. Earth Science Frontiers, 22(5): 239-246 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201505020
|
Hol, S., Spiers, C. J., 2012. Competition between Adsorption-Induced Swelling and Elastic Compression of Coal at CO2 Pressures up to 100 MPa. Journal of the Mechanics and Physics of Solids, 60(11): 1862-1882. https://doi.org/10.1016/j.jmps.2012.06.012
|
Jafféa, R., Gong, Y. M., Furton, K. G., 1997. Temperature Effects on Supercritical Carbon Dioxide Extractions of Hydrocarbons from Geological Samples. Journal of High Resolution Chromatography, 20(11): 586-590. https://doi.org/10.1002/jhrc.1240201104
|
Jarboe, P.J., Candela, P.A., Zhu, W. L., et al., 2015. Extraction of Hydrocarbons from High-Maturity Marcellus Shale Using Supercritical Carbon Dioxide. Energy Fuels, 29(12): 7897-7909. doi: 10.1021/acs.energyfuels.5b02059
|
Jiang, Y. D., Luo, Y. H., Lu, Y. Y., et al., 2016. Effects of Supercritical CO2 Treatment Time, Pressure, and Temperature on Microstructure of Shale. Energy, 97: 173-181. https://doi.org/10.1016/j.energy.2015.12.124
|
Lamberti, V. E., Fosdick, L. D., Jessup, E. R., et al., 2002. A Hands-on Introduction to Molecular Dynamics. Journal of Chemical Education, 79(5): 601. https://doi.org/10.1021/ed079p601
|
Li, J., Zhou, S.X., Gaus, G., et al., 2018. Characterization of Methane Adsorption on Shale and Isolated Kerogen from the Sichuan Basin under Pressure up to 60 MPa: Experimental Results and Geological Implications. International Journal of Coal Geology, 189: 83-93. https://doi.org/10.1016/j.coal.2018.02.020
|
Liu, S.X., Zhong, J.H., Ma, Y.S., et al., 2015a. Study of Microscopic Pore Structure and Adsorption Isothermal of Carboniferous Shale, Eastern Qaidam Basin. Journal of China University of Petroleum (Edition of Natural Science), 39(1): 33-42 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201501005
|
Liu, S.X., Zhong, J.H., Ma, Y.S., et al., 2015b. Super-Critical Isothermal Adsorption of Gas in Shale. Coal Geology & Exploration, 43(3): 45-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt201503009
|
Lu, Y. Y., Ao, X., Tang, J. R., et al., 2016. Swelling of Shale in Supercritical Carbon Dioxide. Journal of Natural Gas Science and Engineering, 30: 268-275. https://doi.org/10.1016/j.jngse.2016.02.011
|
Luo, X. R., Wang, S. Z., Wang, Z. G., et al., 2015. Adsorption of Methane, Carbon Dioxide and Their Binary Mixtures on Jurassic Shale from the Qaidam Basin in China. International Journal of Coal Geology, 150/151: 210-223. https://doi.org/10.1016/j.coal.2015.09.004
|
Okamoto, I., Li, X. C., Ohsumi, T., 2005. Effect of Supercritical CO2 as the Organic Solvent on Cap Rock Sealing Performance for Underground Storage. Energy, 30(11-12): 2344-2351. https://doi.org/10.1016/j.energy.2003.10.025
|
Pan, Z. J., Connell, L. D., 2012. Modelling Permeability for Coal Reservoirs: A Review of Analytical Models and Testing Data. International Journal of Coal Geology, 92: 1-44. https://doi.org/10.1016/j.coal.2011.12.009
|
Pan, Z. J., Connell, L. D., Camilleri, M., et al., 2010. Effects of Matrix Moisture on Gas Diffusion and Flow in Coal. Fuel, 89(11): 3207-3217. https://doi.org/10.1016/j.fuel.2010.05.038
|
Sabegh, M. A., Rajaei, H., Esmaeilzadeh, F., et al., 2012. Solubility of Ketoprofen in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 72: 191-197. https://doi.org/10.1016/j.supflu.2012.08.008
|
Sun, H. Y., Zhao, H., Qi, N., et al., 2017. Molecular Insights into the Enhanced Shale Gas Recovery by Carbon Dioxide in Kerogen Slit Nanopores. The Journal of Physical Chemistry C, 121(18): 10233-10241. https://doi.org/10.1021/acs.jpcc.7b02618
|
Xiao, Z., Deng, H., Hou, W., et al., 2011. Development and Discussion of New Technology of Shale Gas Exploration and Exploitation. Drilling & Production Technology, 34(4): 18-20 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0d8db018dc9a648825ed15a7456ebb24&encoded=0&v=paper_preview&mkt=zh-cn
|
Xie, W.D., Wang, M., Dai, X.G., 2018. CO2 Adsorption Characteristics and Its Affecting Factors of Lower Silurian, Longmaxi Formation Shale in Southeast Chongqing. Journal of Henan Polytechnic University (Natural Science), 37(6): 81-88 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/jzgxyxb201806011
|
Yan, J.M., Zhang, Q.Y., 1979. Adsoroption and Coagulation. Science Press, Beijing (in Chinese).
|
Yin, H., Zhou, J. P., Jiang, Y. D., et al., 2016. Physical and Structural Changes in Shale Associated with Supercritical CO2 Exposure. Fuel, 184: 289-303. https://doi.org/10.1016/j.fuel.2016.07.028
|
Zhang, X. W., Lu, Y. Y., Tang, J. R., et al., 2017. Experimental Study on Fracture Initiation and Propagation in Shale Using Supercritical Carbon Dioxide Fracturing. Fuel, 190: 370-378. https://doi.org/10.1016/j.fuel.2016.10.120
|
Zhang, X.M., Shi, W.Z., Shu, Z.G., et al., 2015. Calculation Model of Shale Gas Content and Its Application in Fuling Area. Earth Science, 42(7): 1157-1168 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707012
|
Zhou, L., Li, M., Zhou, Y.P., 2000. Measurement and Theoretical Analysis of the Adsorption of Supercritical Methane on Super Activated Carbon. Science in China(Series B), 30(1): 49-56 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JBXG200002004.htm
|
Zhou, L., Lü, C.Z., Wang, Y.L., et al., 1999. Physisorption of Gases on Porous Solids at Above-Critical Temperatures. Progress in Chemistry, 11(3): 221-226 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz199903001
|
Zhou, S.W., Wang, H.Y., Xue, H.Q., et al., 2017. Discussion on the Supercritical Adsorption Mechanism of Shale Gas Based on One-Kondo Lattice Model. Earth Science, 42(8): 1421-1430 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201708020.htm
|
Zhu, Y.S., Song, X.H., Guo, Y.T., et al., 2016. High-Pressure Adsorption Characteristics and Controlling Factors of CH4 and CO2 on Shales from Longmaxi Formation, Chongqing, Sichuan Basin. Natural Gas Geoscience, 27(10): 1942-1952 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201610020
|
Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201506002.htm
|
郭冀隆, 李紫晶, 张阳阳, 等, 2015.地质封存CO2-水-岩作用对页岩有机碳的萃取效应研究.地学前缘, 22(5): 239-246. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505020
|
刘圣鑫, 钟建华, 马寅生, 等, 2015a.柴东石炭系页岩微观孔隙结构与页岩气等温吸附研究.中国石油大学学报(自然科学版), 39(1):33-42. http://d.old.wanfangdata.com.cn/Periodical/sydxxb201501005
|
刘圣鑫, 钟建华, 马寅生, 等, 2015b.页岩中气体的超临界等温吸附研究.煤田地质与勘探, 43(3): 45-50. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201503009
|
肖洲, 邓虎, 侯伟, 等, 2011.页岩气勘探开发的发展与新技术探讨.钻采工艺, 34(4): 18-20. doi: 10.3969/j.issn.1006-768X.2011.04.006
|
谢卫东, 王猛, 代旭光, 2018.渝东南地区下志留统龙马溪组页岩吸附CO2特征及影响因素分析.河南理工大学学报(自然科学版), 37(6):81-88. http://d.old.wanfangdata.com.cn/Periodical/jzgxyxb201806011
|
严继民, 张启元, 1979.吸附与凝聚.北京:科学出版社.
|
张晓明, 石万忠, 舒志国, 等, 2017.涪陵地区页岩含气量计算模型及应用.地球科学, 42(7):1157-1168. doi: 10.3799/dqkx.2017.094
|
周理, 李明, 周亚平, 2000.超临界甲烷在高表面活性炭上的吸附测量及其理论分析.中国科学(B辑), 30(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cb200001008
|
周理, 吕昌忠, 王怡林, 等, 1999.述评超临界温度气体在多孔固体上的物理吸附.化学进展, 11(3): 221-226. doi: 10.3321/j.issn:1005-281X.1999.03.001
|
周尚文, 王红岩, 薛华庆, 等, 2017.基于One-Kondo格子模型的页岩气超临界吸附机理探讨.地球科学, 42(8): 1421-1430. doi: 10.3799/dqkx.2017.543
|
朱阳升, 宋学行, 郭印同, 等, 2016.四川盆地龙马溪组页岩的CH4和CO2气体高压吸附特征及控制因素.天然气地球科学, 27(10): 1942-1952. doi: 10.11764/j.issn.1672-1926.2016.10.1942
|
邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6): 689-701. doi: 10.11698/PED.2015.06.01
|