• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 11
    Nov.  2019
    Turn off MathJax
    Article Contents
    Zhang Chen, Zhou Shixin, Chen Ke, Li Jing, Chen Kefei, Zhang Yuhong, Li Pengpeng, Sun Zexiang, Fu Deliang, 2019. Impact on Microscopic Pore Structure and Adsorption Behavior of Carbon Dioxide on Shale under High Pressure Condition. Earth Science, 44(11): 3773-3782. doi: 10.3799/dqkx.2019.107
    Citation: Zhang Chen, Zhou Shixin, Chen Ke, Li Jing, Chen Kefei, Zhang Yuhong, Li Pengpeng, Sun Zexiang, Fu Deliang, 2019. Impact on Microscopic Pore Structure and Adsorption Behavior of Carbon Dioxide on Shale under High Pressure Condition. Earth Science, 44(11): 3773-3782. doi: 10.3799/dqkx.2019.107

    Impact on Microscopic Pore Structure and Adsorption Behavior of Carbon Dioxide on Shale under High Pressure Condition

    doi: 10.3799/dqkx.2019.107
    • Received Date: 2019-05-23
    • Publish Date: 2019-11-15
    • In order to understand the transformation of microscopic pore structure and adsorption behavior of carbon dioxide (CO2) on shale under high pressure condition, using low-pressure N2 adsorption analysis and isothermal adsorption instrument based on gravimetric method, the microstructural characteristics before and after CO2 treatment, and the adsorption behavior of CO2 in Jiaoye 6 shale from Jiaoshiba area of Sichuan basin were studied. The results show that the shale specific surface area decreased, and the average pore size and pore volume increased with increasing CO2 treatment temperature. Besides, the proportions of micropore and mesopore decreased, and the proportion of macropore increased with increasing temperature. CO2 could change the pore structure of shale, and the degree of change is positively correlated with temperature. The results also show that the excess adsorption amount of CO2 increased with increasing pressure, reached a maximum value, and then decreased. The absolute adsorption amount of CO2 increased with increasing pressure, and then tended to be stable after 40 MPa. The adsorption behavior of CO2 on shale is related to temperature and pressure. Langmuir model can still fit CO2 adsorption on shale well under high pressure.

       

    • loading
    • Alemu, B. L., Aagaard, P., Munz, I. A., et al., 2011. Caprock Interaction with CO2: A Laboratory Study of Reactivity of Shale with Supercritical CO2 and Brine. Applied Geochemistry, 26(12): 1975-1989. https://doi.org/10.1016/j.apgeochem.2011.06.028
      Anggara, F., Sasaki, K., Rodrigues, S., et al., 2014. The Effect of Megascopic Texture on Swelling of a Low Rank Coal in Supercritical Carbon Dioxide. International Journal of Coal Geology, 125: 45-56. https://doi.org/10.1016/j.coal.2014.02.004
      Ao, X., Lu, Y. Y., Tang, J. R., et al., 2017. Investigation on the Physics Structure and Chemical Properties of the Shale Treated by Supercritical CO2. Journal of CO2 Utilization, 20: 274-281. https://doi.org/10.1016/j.jcou.2017.05.028
      Athy, L.F., 1930. Density, Porosity and Compaction of Sedimentary Rocks. AAPG Bulletin, 14(1): 1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6041494bd398fc31dace86cb77e1788
      Brunauer, S., Deming, L. S., Deming, W. E., et al., 1940. On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7): 1723-1732. https://doi.org/10.1021/ja01864a025
      Chong, L., Myshakin, E. M., 2018. Molecular Simulations of Competitive Adsorption of Carbon Dioxide–Methane Mixture on Illitic Clay Surfaces. Fluid Phase Equilibria, 472: 185-195. https://doi.org/10.1016/j.fluid.2018.05.019
      Day, S., Fry, R., Sakurovs, R., 2008. Swelling of Australian Coals in Supercritical CO2. International Journal of Coal Geology, 74(1): 41-52. https://doi.org/10.1016/j.coal.2007.09.006
      Do, D. D., Do, H. D., 2003. Pore Characterization of Carbonaceous Materials by DFT and GCMC Simulations: A Review. Adsorption Science & Technology, 21(5): 389-423. https://doi.org/10.1260/026361703769645753
      Duan, S., Gu, M., Du, X. D., et al., 2016. Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale. Energy & Fuels, 30(3): 2248-2256. https://doi.org/10.1021/acs.energyfuels.5b02088
      Gasparik, M., Ghanizadeh, A., Bertier, P., et al., 2012. High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands.Energy & Fuels, 26(8): 4995-5004. https://doi.org/10.1021/ef300405g
      Gasparik, M., Rexer, T. F. T., Aplin, A. C., et al., 2014. First International Inter-Laboratory Comparison of High-Pressure CH4, CO2 and C2H6 Sorption Isotherms on Carbonaceous Shales. International Journal of Coal Geology, 132: 131-146. https://doi.org/10.1016/j.coal.2014.07.010
      Guo, J.L., Li, Z.J., Zhang, Y.Y., et al., 2015. An Experimental Study of the Extraction of Organic Carbon from Shale during the CO2-Water-Rock Interaction Related to Geological CO2 Storage. Earth Science Frontiers, 22(5): 239-246 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201505020
      Hol, S., Spiers, C. J., 2012. Competition between Adsorption-Induced Swelling and Elastic Compression of Coal at CO2 Pressures up to 100 MPa. Journal of the Mechanics and Physics of Solids, 60(11): 1862-1882. https://doi.org/10.1016/j.jmps.2012.06.012
      Jafféa, R., Gong, Y. M., Furton, K. G., 1997. Temperature Effects on Supercritical Carbon Dioxide Extractions of Hydrocarbons from Geological Samples. Journal of High Resolution Chromatography, 20(11): 586-590. https://doi.org/10.1002/jhrc.1240201104
      Jarboe, P.J., Candela, P.A., Zhu, W. L., et al., 2015. Extraction of Hydrocarbons from High-Maturity Marcellus Shale Using Supercritical Carbon Dioxide. Energy Fuels, 29(12): 7897-7909. doi: 10.1021/acs.energyfuels.5b02059
      Jiang, Y. D., Luo, Y. H., Lu, Y. Y., et al., 2016. Effects of Supercritical CO2 Treatment Time, Pressure, and Temperature on Microstructure of Shale. Energy, 97: 173-181. https://doi.org/10.1016/j.energy.2015.12.124
      Lamberti, V. E., Fosdick, L. D., Jessup, E. R., et al., 2002. A Hands-on Introduction to Molecular Dynamics. Journal of Chemical Education, 79(5): 601. https://doi.org/10.1021/ed079p601
      Li, J., Zhou, S.X., Gaus, G., et al., 2018. Characterization of Methane Adsorption on Shale and Isolated Kerogen from the Sichuan Basin under Pressure up to 60 MPa: Experimental Results and Geological Implications. International Journal of Coal Geology, 189: 83-93. https://doi.org/10.1016/j.coal.2018.02.020
      Liu, S.X., Zhong, J.H., Ma, Y.S., et al., 2015a. Study of Microscopic Pore Structure and Adsorption Isothermal of Carboniferous Shale, Eastern Qaidam Basin. Journal of China University of Petroleum (Edition of Natural Science), 39(1): 33-42 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201501005
      Liu, S.X., Zhong, J.H., Ma, Y.S., et al., 2015b. Super-Critical Isothermal Adsorption of Gas in Shale. Coal Geology & Exploration, 43(3): 45-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt201503009
      Lu, Y. Y., Ao, X., Tang, J. R., et al., 2016. Swelling of Shale in Supercritical Carbon Dioxide. Journal of Natural Gas Science and Engineering, 30: 268-275. https://doi.org/10.1016/j.jngse.2016.02.011
      Luo, X. R., Wang, S. Z., Wang, Z. G., et al., 2015. Adsorption of Methane, Carbon Dioxide and Their Binary Mixtures on Jurassic Shale from the Qaidam Basin in China. International Journal of Coal Geology, 150/151: 210-223. https://doi.org/10.1016/j.coal.2015.09.004
      Okamoto, I., Li, X. C., Ohsumi, T., 2005. Effect of Supercritical CO2 as the Organic Solvent on Cap Rock Sealing Performance for Underground Storage. Energy, 30(11-12): 2344-2351. https://doi.org/10.1016/j.energy.2003.10.025
      Pan, Z. J., Connell, L. D., 2012. Modelling Permeability for Coal Reservoirs: A Review of Analytical Models and Testing Data. International Journal of Coal Geology, 92: 1-44. https://doi.org/10.1016/j.coal.2011.12.009
      Pan, Z. J., Connell, L. D., Camilleri, M., et al., 2010. Effects of Matrix Moisture on Gas Diffusion and Flow in Coal. Fuel, 89(11): 3207-3217. https://doi.org/10.1016/j.fuel.2010.05.038
      Sabegh, M. A., Rajaei, H., Esmaeilzadeh, F., et al., 2012. Solubility of Ketoprofen in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 72: 191-197. https://doi.org/10.1016/j.supflu.2012.08.008
      Sun, H. Y., Zhao, H., Qi, N., et al., 2017. Molecular Insights into the Enhanced Shale Gas Recovery by Carbon Dioxide in Kerogen Slit Nanopores. The Journal of Physical Chemistry C, 121(18): 10233-10241. https://doi.org/10.1021/acs.jpcc.7b02618
      Xiao, Z., Deng, H., Hou, W., et al., 2011. Development and Discussion of New Technology of Shale Gas Exploration and Exploitation. Drilling & Production Technology, 34(4): 18-20 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0d8db018dc9a648825ed15a7456ebb24&encoded=0&v=paper_preview&mkt=zh-cn
      Xie, W.D., Wang, M., Dai, X.G., 2018. CO2 Adsorption Characteristics and Its Affecting Factors of Lower Silurian, Longmaxi Formation Shale in Southeast Chongqing. Journal of Henan Polytechnic University (Natural Science), 37(6): 81-88 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/jzgxyxb201806011
      Yan, J.M., Zhang, Q.Y., 1979. Adsoroption and Coagulation. Science Press, Beijing (in Chinese).
      Yin, H., Zhou, J. P., Jiang, Y. D., et al., 2016. Physical and Structural Changes in Shale Associated with Supercritical CO2 Exposure. Fuel, 184: 289-303. https://doi.org/10.1016/j.fuel.2016.07.028
      Zhang, X. W., Lu, Y. Y., Tang, J. R., et al., 2017. Experimental Study on Fracture Initiation and Propagation in Shale Using Supercritical Carbon Dioxide Fracturing. Fuel, 190: 370-378. https://doi.org/10.1016/j.fuel.2016.10.120
      Zhang, X.M., Shi, W.Z., Shu, Z.G., et al., 2015. Calculation Model of Shale Gas Content and Its Application in Fuling Area. Earth Science, 42(7): 1157-1168 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707012
      Zhou, L., Li, M., Zhou, Y.P., 2000. Measurement and Theoretical Analysis of the Adsorption of Supercritical Methane on Super Activated Carbon. Science in China(Series B), 30(1): 49-56 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JBXG200002004.htm
      Zhou, L., Lü, C.Z., Wang, Y.L., et al., 1999. Physisorption of Gases on Porous Solids at Above-Critical Temperatures. Progress in Chemistry, 11(3): 221-226 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz199903001
      Zhou, S.W., Wang, H.Y., Xue, H.Q., et al., 2017. Discussion on the Supercritical Adsorption Mechanism of Shale Gas Based on One-Kondo Lattice Model. Earth Science, 42(8): 1421-1430 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201708020.htm
      Zhu, Y.S., Song, X.H., Guo, Y.T., et al., 2016. High-Pressure Adsorption Characteristics and Controlling Factors of CH4 and CO2 on Shales from Longmaxi Formation, Chongqing, Sichuan Basin. Natural Gas Geoscience, 27(10): 1942-1952 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201610020
      Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201506002.htm
      郭冀隆, 李紫晶, 张阳阳, 等, 2015.地质封存CO2-水-岩作用对页岩有机碳的萃取效应研究.地学前缘, 22(5): 239-246. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505020
      刘圣鑫, 钟建华, 马寅生, 等, 2015a.柴东石炭系页岩微观孔隙结构与页岩气等温吸附研究.中国石油大学学报(自然科学版), 39(1):33-42. http://d.old.wanfangdata.com.cn/Periodical/sydxxb201501005
      刘圣鑫, 钟建华, 马寅生, 等, 2015b.页岩中气体的超临界等温吸附研究.煤田地质与勘探, 43(3): 45-50. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201503009
      肖洲, 邓虎, 侯伟, 等, 2011.页岩气勘探开发的发展与新技术探讨.钻采工艺, 34(4): 18-20. doi: 10.3969/j.issn.1006-768X.2011.04.006
      谢卫东, 王猛, 代旭光, 2018.渝东南地区下志留统龙马溪组页岩吸附CO2特征及影响因素分析.河南理工大学学报(自然科学版), 37(6):81-88. http://d.old.wanfangdata.com.cn/Periodical/jzgxyxb201806011
      严继民, 张启元, 1979.吸附与凝聚.北京:科学出版社.
      张晓明, 石万忠, 舒志国, 等, 2017.涪陵地区页岩含气量计算模型及应用.地球科学, 42(7):1157-1168. doi: 10.3799/dqkx.2017.094
      周理, 李明, 周亚平, 2000.超临界甲烷在高表面活性炭上的吸附测量及其理论分析.中国科学(B辑), 30(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cb200001008
      周理, 吕昌忠, 王怡林, 等, 1999.述评超临界温度气体在多孔固体上的物理吸附.化学进展, 11(3): 221-226. doi: 10.3321/j.issn:1005-281X.1999.03.001
      周尚文, 王红岩, 薛华庆, 等, 2017.基于One-Kondo格子模型的页岩气超临界吸附机理探讨.地球科学, 42(8): 1421-1430. doi: 10.3799/dqkx.2017.543
      朱阳升, 宋学行, 郭印同, 等, 2016.四川盆地龙马溪组页岩的CH4和CO2气体高压吸附特征及控制因素.天然气地球科学, 27(10): 1942-1952. doi: 10.11764/j.issn.1672-1926.2016.10.1942
      邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6): 689-701. doi: 10.11698/PED.2015.06.01
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (5044) PDF downloads(86) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return