Citation: | Huang Yong, Fu Jiangang, Li Guangming, Zhang Linkui, Liu Hong, 2019. Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization. Earth Science, 44(7): 2197-2206. doi: 10.3799/dqkx.2019.114 |
Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038
|
Aoya, M., Wallis, S. R., Kawakami, T., et al., 2006. The Malashan Gneiss Dome in South Tibet:Comparative Study with the Kangmar Dome with Special Reference to Kinematics of Deformation and Origin of Associated Granites. Geological Society, London, Special Publications, 268(1):471-495. https://doi.org/10.1144/gsl.sp.2006.268.01.22
|
Fu, J. G., Li, G. M., Wang, G. H., et al., 2018. Establishment of the North Himalayan Double Gneiss Domes:Evidence from Field Identification of the Cuonadong Dome, South Tibet. Geology in China, 45(4):783-802 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804011
|
Gao, L., Zeng, L. S., Xie, K. J., 2012. Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57(6):639-650. https://doi.org/10.1007/s11434-011-4805-4
|
Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. https://doi.org/10.1021/ac503749k
|
Huang, C. M., Zhao, Z. D., Li, G. M., et al., 2017. Leucogranites in Lhozag, Southern Tibet:Implications for the Tectonic Evolution of the Eastern Himalaya. Lithos, 294-295:246-262. https://doi.org/10.1016/j.lithos.2017.09.014
|
Huang, Y., Liang, W., Zhang, L. K., et al., 2018. The Initial Break-Up between Tethyan-Himalaya and Indian Terrane:Evidences from Late Cretaceous OIB-Type Basalt in Southern Tibet. Earth Science, 43(8):2651-2663 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.573
|
Le Fort, P., 1981. Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement. Journal of Geophysical Research:Solid Earth, 86(B11):10545-10568. https://doi.org/10.1029/jb086ib11p10545
|
Le Fort, P., Cronin, V., 1988. Granites in the Tectonic Evolution of the Himalaya, Karakoram and Southern Tibet[and Discussion]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 326(1589):281-299. https://doi.org/10.1098/rsta.1988.0088
|
Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
|
Liang, W., Zhang, L. K., Xiao, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8):2742-2754 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.154
|
Lin, B., Tang, J. X., Zeng, W. B., et al., 2014. Petrochemical Features, Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit, Southern Xizang (Tibet). Geological Review, 60(1):178-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201401017
|
Liu, X. C., Wu, F. Y., Yu, L. J., et al., 2015. Emplacement Age of Leucogranite in the Kampa Dome, Southern Tibet. Tectonophysics, 667:163-175. https://doi.org/10.1016/j.tecto.2015.12.001
|
Liu, Z. C., Wu, F. Y., Ding, L., et al., 2016. Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243:337-354. https://doi.org/10.1016/j.lithos.2015.11.026
|
Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
|
Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley.
|
Qi, X. X., Zeng, L. S., Meng, X. J., et al., 2008. Zircon SHRIMP U-Pb Dating for Dala Granite in the Tethyan Himalaya and Its Geological Implication. Acta Petrologica Sinica, 24(7):1501-1508 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807007
|
Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science in China (Series D), 47(8):871-880 (in Chinese).
|
Wang, X. X., Zhang, J. J., Yan, S. Y., et al., 2016. Age and Geochemistry of the Cuona Leucogranite in Southern Tibet and Its Geological Implications. Geological Bulletin of China, 35(1):91-103 (in Chinese with English abstract).
|
Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
|
Yin, A., Dubey, C. S., Webb, A. A. G., et al., 2010. Geologic Correlation of the Himalayan Orogen and Indian Craton:Part 1. Structural Geology, U-Pb Zircon Geochronology, and Tectonic Evolution of the Shillong Plateau and Its Neighboring Regions in NE India. Geological Society of America Bulletin, 122(3-4):336-359. https://doi.org/10.1130/b26460.1
|
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
|
Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004
|
Zhang, J. J., Guo, L., Zhang, B., 2007. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003
|
Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4):939-960. https://doi.org/10.1016/j.gr.2011.11.004
|
Zhang, Z., Zhang, L. K., Li, G. M., et al., 2017. The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes. Acta Geoscientia Sinica, 38(5):754-766 (in Chinese with English abstract).
|
Zhang, Z. M., Ding, L., Zhao, Z. D., et al., 2017. Tectonic Evolution and Dynamics of the Tibetan Plateau. Gondwana Research, 41:1-8. https://doi.org/10.1016/j.gr.2016.09.001
|
付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅双穹窿构造的建立:来自藏南错那洞穹窿的厘定.中国地质, 45(4):783-802. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201804011.htm
|
黄勇, 梁维, 张林奎, 等, 2018.特提斯喜马拉雅-印度地体初始裂解:来自藏南地区晚白垩世OIB型玄武岩的证据.地球科学, 43(8):2651-2663. http://earth-science.net/WebPage/Article.aspx?id=3903
|
李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
|
梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学, 43(8):2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909
|
林彬, 唐菊兴, 郑文宝, 等, 2014.藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成.地质论评, 60(1):178-189. http://d.old.wanfangdata.com.cn/Periodical/dzlp201401017
|
戚学祥, 曾令森, 孟祥金, 等, 2008.特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 24(7):1501-1508. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807007
|
王汝成, 吴福元, 谢磊, 等, 2017.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究.中国科学(D辑), 47(8):871-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201708001
|
王晓先, 张进江, 闫淑玉, 等, 2016.藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义.地质通报, 35(1):91-103. doi: 10.3969/j.issn.1671-2552.2016.01.008
|
吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
|
曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705004
|
张进江, 郭磊, 张波, 2007.北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003
|
张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题.地球学报, 38(5):754-766. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705015.htm
|