• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 4
    Apr.  2020
    Turn off MathJax
    Article Contents
    Wang Yan, Ma Changqian, Wang Lianxun, Liu Yuanyuan, 2020. Petrogenesis and Tectonic Implications of the Cretaceous Granites from Xiaojiugong-Shadian, Northwest Jiangxi Province. Earth Science, 45(4): 1115-1135. doi: 10.3799/dqkx.2019.116
    Citation: Wang Yan, Ma Changqian, Wang Lianxun, Liu Yuanyuan, 2020. Petrogenesis and Tectonic Implications of the Cretaceous Granites from Xiaojiugong-Shadian, Northwest Jiangxi Province. Earth Science, 45(4): 1115-1135. doi: 10.3799/dqkx.2019.116

    Petrogenesis and Tectonic Implications of the Cretaceous Granites from Xiaojiugong-Shadian, Northwest Jiangxi Province

    doi: 10.3799/dqkx.2019.116
    • Received Date: 2019-05-14
    • Publish Date: 2020-04-15
    • Many Late Mesozoic granites occur in northwest Jiangxi Province and northeast Hunan Province, which constitute a NEE-trending magmatic belt together with the Late Mesozoic granites in the Middle and Lower Yangtze regions. In this paper, it presents the petrogenesis and tectonic implications, based on the systematic petrographical, zircon U-Pb geochronological, geochemical and isotopic analyses of two representative samples from the Xiaojiugong and Shadian granites. The Xiaojiugong and Shadian intrusions principally consist of medium to coarse-grained porphyritic biotite monzogranite. LA-ICP-MS zircon U-Pb dating yields magma crystallization ages of 124±1 Ma for the Xiaojiugong intrusion and 125±1 Ma for the Shadian intrusion. The two intrusions emplaced in the period of Late Yanshanian. The Xiaojiugong and Shadian granites are all characterized by high-K, calc-alkaline and low contents of Fe2O3T and MgO, indicating they are mainly weakly peraluminous granites. They show similar distribution patterns of REE and trace elements, i.e. enrichment in LREE and large-ion lithophile elements of K, Rb, Th and U, depletion in Ba, Sr, P and high field strength elements of Nb, Ta and Ti, and pronounced negative Eu anomalies (Eu/Eu*=0.17-0.50). Major and trace elements show that the Xiaojiugong and Shadian granites are high-K calc-alkaline Ⅰ-type granites. The Xiaojiugong granites have εNd(t) values of -8.06 to -6.20 and two-stage model ages (TDM2) of 1.42-1.57 Ga. The Shadian granites have εNd(t) values of -6.51 to -6.08 and the corresponding TDM2 of 1.42-1.45 Ga. The Sr-Nd isotopic composition and geochemical characteristics of the Xiaojiugong and Shadian granites suggest the main origin of lower crust. Their source might be the Mesoproterozoic neutral-basic igneous rocks. The Xiaojiugong and Shadian granites passively emplaced through expansion of the dikes. Combined with the regional tectonic background, the granites formed in extensional environment, and upwelling mantle probably provided a continuous heat source for the partial melting of lower crustal igneous rocks. The magma experienced a significant process of fractional crystallization during upwelling. A handful of microgranular enclaves and surrounding rock xenoliths in the granites reflect that the granitic magma might have been weekly contaminated when rising. Regional comparison shows that, from Early Yanshanian to Late Yanshanian, the pressure of the granitic magma source decreased significantly in the northwest Jiangxi and northeast Hunan. This might indicate that the crust had undergone significant thinning in the period of Late Mesozoic.

       

    • loading
    • Altherr, R., Siebel, W., 2002. Ⅰ-Type Plutonism in a Continental Back-Arc Setting:Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4):397-415. https://doi.org/10.1007/s00410-002-0352-y
      Arth, J. G., Reston, V., 1976. Behavior of Trace Elements during Magmatic Processes-A Summary of Theoretical Models and Their Applications. Journal of Research of the US Geological Survey, 4(1):41-47. http://cn.bing.com/academic/profile?id=8184351cf3d9c1d9a6afe8ef8f7546cb&encoded=0&v=paper_preview&mkt=zh-cn
      Chappell, B. W., 1999. Aluminium Saturation in Ⅰ- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6):1111-1138. https://doi.org/10.1093/petrology/28.6.1111
      Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China:Nd and Sr Isotopic Evidence. Tectonophysics, 284(1-2):101-133. https://doi.org/10.1016/s0040-1951(97)00186-8
      Ding, L.X., Huang, G.C., Xia, J.L., et al., 2018.Age and Petrogenesis of the Echeng Intrusion in Southeastern Hubei Province:Implications for Iron Mineralization. Earth Science, 43(7):2350-2369(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201807011
      Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5):933-938. https://doi.org/10.1016/s0016-7037(99)00355-5
      Gao, S., Zhang, B. R., Xie, Q. L., et al., 1991. Average Chemical Compositions of Post-Archean Sedimentary and Volcanic Rocks from the Qinling Orogenic Belt and its Adjacent North China and Yangtze Cratons. Chemical Geology, 92(4):261-282. https://doi.org/10.1016/0009-2541(91)90074-2
      Hutton, D. H. W., 1988. Granite Emplacement Mechanisms and Tectonic Controls:Inferences from Deformation Studies. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2-3):245-255. https://doi.org/10.1017/s0263593300014255
      Kaygusuz, A., Siebel, W., Şen, C., et al., 2008. Petrochemistry and Petrology of Ⅰ-Type Granitoids in an Arc Setting:The Composite Torul Pluton, Eastern Pontides, NE Turkey. International Journal of Earth Sciences, 97(4):739-764. https://doi.org/10.1007/s00531-007-0188-9
      Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China:U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3):383-409. https://doi.org/10.1007/s00410-008-0341-x
      Li, P. C., 2006. Magmatism of Phanerozoic Granitoids in Southeastern Hunan Province, China and Its Evolution Regularity (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      Li, X. H., Chung, S. L., Zhou, H. W., et al., 2004. Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi:40Ar/39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for the Tectonic Evolution of SE China. Geological Society, London, Special Publications, 226(1):193-215. https://doi.org/10.1144/gsl.sp.2004.226.01.11
      Li, X. H., Gui, X. T., 1991. Source Rocks of the Caledonian-Age Granitoid Rocks in Wanyangshan and Zhuguangshan, Southeast China (Ⅰ)-Evidence from Sr-Nd-Pb-O Isotopic Constraints. Science in China (Ser.B), 21(5):533-540 (in Chinese).
      Li, X. H., Li, W. X., Wang, X. C., et al., 2010. SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China:Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 119(3-4):427-438. https://doi.org/10.1016/j.lithos.2010.07.018
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model. Geology, 35(2):179. https://doi.org/10.1130/g23193a.1
      Li,Z.X.,Li,X.H.,Zhou, H.W.,et al.,2002. Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2):163-166. https://doi.org/10.1130/0091-7613(2002)030 <0163:gccisc>2.0.co;2
      Ling, M. X., Wang, F. Y., Ding, X., et al., 2009a. Cretaceous Ridge Subduction along the Lower Yangtze River Belt, Eastern China. Economic Geology, 104(2):303-321. https://doi.org/10.2113/gsecongeo.104.2.303
      Ling, W. L., Duan, R. C., Xie, X. J., et al., 2009b. Contrasting Geochemistry of the Cretaceous Volcanic Suites in Shandong Province and Its Implications for the Mesozoic Lower Crust Delamination in the Eastern North China Craton. Lithos, 113(3-4):640-658. https://doi.org/10.1016/j.lithos.2009.07.001
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Ludwig, K.R., 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, California.
      Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101 <0635:tdog>2.3.co; 2
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6):529-532. https://doi.org/10.1130/0091-7613(2003)031 <0529:hacgio>2.0.co; 2
      Noyes, H. J., Frey, F. A., Wones, D. R., 1983. A Tale of Two Plutons:Geochemical Evidence Bearing on the Origin and Differentiation of the Red Lake and Eagle Peak Plutons, Central Sierra Nevada, California. The Journal of Geology, 91(5):487-509. https://doi.org/10.1086/628801
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      Peng, T.P., Xi, X.W., Wang, Y.J., et al., 2004.Geochemical Characteristics of the Early Mesozoic Granodiorites and Their Tectonic Implications. Geotectonica et Metallogenia, 28(3):287-296(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=55c7e3b2d6d18e3e03d3c26e920db87a&encoded=0&v=paper_preview&mkt=zh-cn
      Qiu, J. S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated Ⅰ-type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Acta Petrologica Sinica, 24(11):2468-2484 (in Chinese with English abstract). https://researchers.mq.edu.au/en/publications/petrogenesis-of-highly-fractionated-i-type-granites-in-the-coasta
      Streckeisen, A., 1974. Classification and Nomenclature of Plutonic Rocks Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geologische Rundschau, 63(2):773-786. https://doi.org/10.1007/bf01820841
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Vernon, R. H., 1984. Microgranitoid Enclaves in Granites-Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 309(5967):438-439. https://doi.org/10.1038/309438a0
      Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization:A Case Study of the Mufushan Complex, South China. Lithos, 206-207(1):147-163. https://doi.org/10.1016/j.lithos.2014.07.026
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2006. Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China):Implications for Geodynamics and Cu-Au Mineralization. Lithos, 89(3-4):424-446. https://doi.org/10.1016/j.lithos.2005.12.010
      Wang, T., Wang, X.X., Zheng, Y.D., et al., 2007.Studies on Structures of Granitic Plutons and Granitic Tectonic Dynamics. Chinese Journal of Geology(Scientia Geologica Sinica), 42(1):91-113(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701009
      Wang, Y., Ma, C. Q., Wang, L. X., et al., 2018. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block:Constraint on Crustal Growth. Earth Science, 43(3):635-654 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X18300820
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150(5):6-25. https://doi.org/10.1016/j.lithos.2012.03.020
      Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Scientia Sinica(Terrae), 47(7):745-765(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
      Xing, F.M., Chen, J.F., Xu, X., et al., 1991. Nd Isotopic Characteristics of Low Grade Metamorphic and Sedimentary Rocks from Southern Anhui Province and Their Significance in Tectonics. Geoscience, 5(3):290-299 (in Chinese with English abstract). doi: 10.1007%2FBF02869687
      Xu, D.R., Deng, T., Dong, G.J., et al., 2017.Zircon U-Pb Geochronological and Geochemical Characteristics of the Lianyunshan Two-Mica Monzogranites in Northeastern Hunan Province:Implications for Petrogenesis and Tectonic Setting Associated with Polymetallic Mineralization. Earth Science Frontiers, 24(2):104-122(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S002449370600291X
      Xu, D. R., Wang, L., Li, P. C., et al., 2009. Petrogenesis of the Lianyunshan Granites in Northeastern Hunan Province, South China, and Its Geodynamic Implications. Acta Petrologica Sinica, 25(5):1056-1078 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200905003
      Yu, X. Q., Wu, G. G., Zhang, D., et al., 2006. Cretaceous Extension of the Ganhang Tectonic Belt, Southeastern China:Constraints from Geochemistry of Volcanic Rocks. Cretaceous Research, 27(5):663-672. https://doi.org/10.1016/j.cretres.2006.03.008
      Zhang, H. X., Sun, D. Z., Zhu, B. Q., et al., 2000. Pb, Nd Isotopic Study of Proterozoic Metamorphic Sediments in North Jiangxi and Its Tectonic Significance. Regional Geology of China, 19(1):66-71 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200001011
      Zhang, Q., 2012. Could Granitic Magmas Experience Fractionation and Evolution?. Acta Petrologica et Mineralogica, 31(2):252-260 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201202013
      Zhang, Q., Jin, W.J., Li, C.D., et al., 2009.Yanshanian Large-Scale Magmatism and Lithosphere Thinning in Eastern China:Relation to Large Igneous Province. Earth Science Frontiers, 16(2):21-51(in Chinese with English abstract).
      Zhang, Q., Pan, G. Q., Li, C. D., et al., 2007. Does Fractional Crystallization Occur in Granitic Magma?. Some Crucial Questions on Granite Study (2). Acta Petrologica Sinica, 23(6):1239-1251 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=32fd98c039353c6341075d52dadee784&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, Q., Wang, Y., Li, C.D., et al., 2006.A Granite Classification Based on Pressures. Geological Bulletin of China, 25(11):1274-1278(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=6a02a8b305b36a24fc8198db9c86e0bb&encoded=0&v=paper_preview&mkt=zh-cn
      Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2):51-67. https://doi.org/10.1016/s0012-821x(01)00595-7
      Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution. Episodes, 29(1):26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      丁丽雪, 黄圭成, 夏金龙, 等, 2018.鄂东南地区鄂城岩体的时代、成因及其对成矿作用的指示.地球科学, 43(7):2350-2369. doi: 10.3799/dqkx.2018.569
      李鹏春, 2006.湘东北地区显生宙花岗岩岩浆作用及其演化规律(博士学位论文).广州: 中国科学院地球化学研究所.
      李献华, 桂训唐, 1991.万洋山-诸广山加里东期花岗岩的物质来源——Ⅰ.Sr-Nd-Pb-O多元同位素体系示踪.中国科学B辑, 21(5):533-540. http://www.cnki.com.cn/Article/CJFDTotal-JBXK199105011.htm
      彭头平, 席先武, 王岳军, 等, 2004.湘东北早中生代花岗闪长岩地球化学特征及其构造意义.大地构造与成矿学, 28(3):287-296. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200403009
      邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811002
      王涛, 王晓霞, 郑亚东, 等, 2007.花岗岩构造研究及花岗岩构造动力学刍议.地质科学, 42(1):91-113. http://d.old.wanfangdata.com.cn/Periodical/dzkx200701009
      王艳, 马昌前, 王连训, 等, 2018.扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的约束.地球科学, 43(3):635-654. doi: 10.3799/dqkx.2018.900
      吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学:地球科学, 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      邢凤鸣, 陈江峰, 徐祥, 等, 1991.皖南浅变质岩和沉积岩的钕同位素特点及其大地构造意义.现代地质, 5(3):290-299.
      许德如, 邓腾, 董国军, 等, 2017.湘东北连云山二云母二长花岗岩的年代学和地球化学特征:对岩浆成因和成矿地球动力学背景的启示.地学前缘, 24(2):104-122. http://d.old.wanfangdata.com.cn/Periodical/dxqy201702012
      许德如, 王力, 李鹏春, 等, 2009.湘东北地区连云山花岗岩的成因及地球动力学暗示.岩石学报, 25(5):1056-1078. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200905003
      张海祥, 孙大中, 朱炳泉, 等, 2000.赣北元古代变质沉积岩的铅钕同位素特征.中国区域地质, 19(1):66-71. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200001011
      张旗, 2012.花岗质岩浆能够结晶分离和演化吗?岩石矿物学杂志, 31(2):252-260. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201202013
      张旗, 金惟俊, 李承东, 等, 2009.中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系.地学前缘, 16(2):21-51. http://www.cnki.com.cn/Article/CJFDTotal-DXQY200902003.htm
      张旗, 潘国强, 李承东, 等, 2007.花岗岩结晶分离作用问题——关于花岗岩研究的思考之二.岩石学报, 23(6):1239-1251. doi: 10.1016-j.jpdc.2005.04.005/
      张旗, 王焰, 李承东, 等, 2006.花岗岩按照压力的分类.地质通报, 25(11):1274-1278. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200611004
    • dqkx-45-4-1115-Table1.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(2)

      Article views (2589) PDF downloads(95) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return