• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Xie Yuling, Yang Kejun, Li Yingxu, Li Guangming, Qu Yunwei, Dong Lei, 2019. Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony. Earth Science, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122
    Citation: Xie Yuling, Yang Kejun, Li Yingxu, Li Guangming, Qu Yunwei, Dong Lei, 2019. Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony. Earth Science, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122

    Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony

    doi: 10.3799/dqkx.2019.122
    • Received Date: 2019-04-16
    • Publish Date: 2019-06-15
    • The genesis of Mazhala Au-Sb deposit, which is one of the most important Au-Sb deposits in South Tibet Au-Sb metallogenic belt, is still open to debate. Based on field observation, petrography, microscopy, fluid inclusions, and stable isotopic results, in this paper, it discusses the characteristics of ore-forming fluid, the transportation, and the precipitation mechanism of Au and Sb. It can be concluded that the ore-formng fluid has a dominant magmatic origin, and is of moderate temperature (ca.255℃), low salinity (ca.2.8%-3.5% NaCleqv) and rich in CO2. The estimated ore-forming pressure is about 150 MPa. The unmixing between CO2 and aqueous during the fluid evolution leads to the ore precipitation. The Au, Sb may have been sourced from wall rocks, especially the submarine volcanic rock of them.

       

    • loading
    • Aikman, A.B., Harrison, T.M., Lin, D., 2008.Preliminary Results from the Yala-Xiangbo Leucogranite Dome, SE Tibet.Himalayan Journal of Sciences, 2(4):91. doi: 10.3126/hjs.v2i4.809
      Anderson, T.F., Arthur, M.A., 1983.Stable Isotopes of Oxygen and Carbon and Their Application to Sedimentologic and Paleoenvironmental Problems. In: Anderson, T. F., Arthur, M.A., eds., Stable Isotopes in Sedimentary Geology.Society for Sedimentary Geology, Tulsa, Oklahoma.
      Baker, A.J., Fallick, A.E., 1989.Evidence from Lewisian Limestones for Isotopically Heavy Carbon in Two-Thousand-Million-Year-Old Sea Water.Nature, 337:352-354. doi: 10.1038/337352a0
      Boyle, R.W., Jonasson, I.R., 1984. The Geochemistry of Antimony and Its Use as an Indicator Element in Geochemical Prospecting.Journal of Geochemical Exploration, 20(3):223-302. doi: 10.1016/0375-6742(84)90071-2
      Burg, J.P., Chen, G.M., 1984.Tectonics and Structural Zonation of Southern Tibet, China.Nature, 311:219-223. doi: 10.1038/311219a0
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465):1702-1703. doi: 10.1126/science.133.3465.1702
      Deines, P., Gold, D. P., 1973. The Isotopic Composition of Carbonatite and Kimberlite Carbonates and Their Bearing on the Isotopic Composition of Deep-Seated Carbon.Geochimica et Cosmochimica Acta, 37(7):1709-1733. doi: 10.1016/0016-7037(73)90158-0
      Diedesch, T. F., Jessup, M. J., Cottle, J. M., et al., 2016. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome.Lithosphere, 8(5):480-504. doi: 10.1130/L506.1
      Dong, L., Li, G. M., Li, Y. X., et al., 2016. Basalts from the Mazhala Area in Southern Xizang:Geochemistry, Petrogenesis and Geological Implications.Sedimentary Geology and Tethyan Geology, 36(3):16-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD201603003.htm
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2017.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome. International Journal of Earth Sciences, 106(5):1581-1596. doi: 10.1007/s00531-016-1368-2
      Gehrels, G.E., Yin, A., Wang, X.F., 2003.Magmatic History of the Northeastern Tibetan Plateau.Journal of Geophysical Research:Solid Earth, 108(B9). https://doi.org/10.1029/2002jb001876
      Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2):360-376. doi: 10.1016/j.gr.2011.07.027
      Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202.
      Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites.Tectonics, 13(6):1537-1546. doi: 10.1029/94TC01611
      Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites.Geological Society, London, Special Publications, 74(1):391-400. https://doi.org/10.1144/gsl.sp.1993.074.01.26
      Harrison, M.T., Grove, M., Mckeegan, K.D., et al., 1999.Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya.Journal of Petrology, 40(1):3-19. doi: 10.1093/petroj/40.1.3
      Hou, Z. Q., Cook, N. J., Zaw, K., 2009. Metallogenesis of the Tibetan Collisional Orogen. Ore Geology Reviews, 36(1-3):1. doi: 10.1016/j.oregeorev.2009.07.002
      Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a.Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau:Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2):340-351(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200602013.htm
      Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358 (in Chinese with English abstract).
      Hou, Z.Q, Qu, X.M, Yang, Z.S, et al., 2006c.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651 (in Chinese with English abstract).
      Hou, Z.Q., Zhang, H.R., 2015.Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain.Ore Geology Reviews, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026
      Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen.Earth and Planetary Science Letters, 349-350:38-52. doi: 10.1016/j.epsl.2012.06.030
      Jeffrey, L., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147
      Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China.Ore Geology Reviews, 36(1-3):160-173. doi: 10.1016/j.oregeorev.2009.03.006
      Jochum, K. P., Hofmann, A. W., 1997. Constraints on Earth Evolution from Antimony in Mantle-Derived Rocks. Chemical Geology, 139(1-4):39-49. doi: 10.1016/S0009-2541(97)00032-6
      Jochum, K.P., Verma, S.P., 1996.Extreme Enrichment of Sb, Tl and Other Trace Elements in Altered MORB.Chemical Geology, 130(3-4):289-299. doi: 10.1016/0009-2541(96)00014-9
      Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2): https://doi.org/10.1029/2009tc002551
      Li, G.M., Rui, Z.Y., 2004.Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise Metallogenic Belt, Southern Xizang.Geotectonica et Metallogenia, 28(2):165-170(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200402008
      Li, G.M., Zeng, Q.G., Yong, Y.Y., et al., 2005.Discovery of Epithermal Au-Sb Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance:Case Study of Longruri Au-Sb Deposit. Mineral Deposits, 24(6):595-602(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200506002.htm
      Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      Li, J.G., Wang, Q.H., Chen, J.K., et al., 2002.Study of Metallogenic and Prospecting Models for the Shalagang Antimony Deposit, Gyangze, Tibet.Journal of Chengdu Universityof Technology, 29(5):533-538(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200205011
      Li, Y.X., Li, G.M., Dong, L., et al., 2018.Geology and Exploration Potential of the Mazhala Gold Deposit, Cuomei, Xizang:An Approach. Sedimentary Geology and Tethyan Geology, 38(3):90-100(in Chinese with English abstract).
      Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet. Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002
      Liu, H.B., Jin, G.S., Li, J.J., et al., 2013.Determination of Stable Isotope Composition in Uranium Geological Samples.World Nuclear Geoscience, 30(3):174-179(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201303009
      Matsuhisa, Y., Goldsmith, J.R., Clayton, R.N., 1979.Oxygen Isotopic Fractionation in the System Quartz-Albite-Anorthite-Water. Geochimica et Cosmochimica Acta, 43(7):1131-1140. doi: 10.1016/0016-7037(79)90099-1
      Mo, R. W., Sun, X. M., Zhai, W., et al., 2013. Ore-Forming Fluid Geochemistry and Metallogenic Mechanism from Mazhala Gold-Antimony Deposit in Southern Tibet, China. Acta Petrologica Sinica, 29(4):1427-1438(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304025
      Nie, F.J., Hu, P., Jiang, S.H., et al., 2005.Type and Temporal-Spatial Distribution of Gold and Antimony Deposits(Prospects) in Southern Tibet, China.Acta Geologica Sinica, 79(3):373-385(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009
      Pearson, O.N., DeCelles, P.G., 2005.Structural Geology and Regional Tectonic Significance of the Ramgarh Thrust, Himalayan Fold-Thrust Belt of Nepal. Tectonics, 24(4). https://doi.org/10.1029/2003tc001617
      Qing, C.S., Ding, J., Li, Y.X., et al., 2014.Element Combination Anomalies and Prospecting Direction in Mazhala Gold-Antimony Deposit. Metal Mine, (12):134-137(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201412029
      Raymond, J., Williams-Jones, A.E., Clark, J.R., 2005.Mineralization Associated with Scale and Altered Rock and Pipe Fragments from the Berlín Geothermal Field, El Salvador; Implications for Metal Transport in Natural Systems.Journal of Volcanology and Geothermal Research, 145(1-2):81-96. doi: 10.1016/j.jvolgeores.2005.01.003
      Reyes, A.G., Trompetter, W.J., Britten, K., et al., 2003.Mineral Deposits in the Rotokawa Geothermal Pipelines, New Zealand. Journal of Volcanology and Geothermal Research, 119(1-4):215-239. doi: 10.1016/S0377-0273(02)00355-4
      Robb, L., 2007.Introduction to Ore-Forming Processes. Blackwell Publishing, England.
      Spycher, N.F., Reed, M.H., 1989.As (Ⅲ) and Sb (Ⅲ) Sulfide Complexes:An Evaluation of Stoichiometry and Stability from Existing Experimental Data.Geochimica et Cosmochimica Acta, 53(9):2185-2194. doi: 10.1016/0016-7037(89)90342-6
      Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China.Ore Geology Reviews, 36(1-3):235-249. doi: 10.1016/j.oregeorev.2009.05.002
      Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. doi: 10.2113/gsecongeo.69.6.843
      Visonà, D, Lombardo, B., 2002. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leucogranite Genesis by Isobaric Heating? Lithos, 62(3-4):125-150. doi: 10.1016/S0024-4937(02)00112-3
      Wagner, T., Lee, J., Hacker, B.R., et al., 2010.Kinematics and Vorticity in Kangmar Dome, Southern Tibet:Testing Midcrustal Channel Flow Models for the Himalaya.Tectonics, 29(6). https://doi.org/10.1029/2010tc002746
      Wang, J.H., Yin, A., Harrison, T.M., et al., 2001.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1-2):123-133. https://doi.org/10.1016/s0012-821x(01)00315-6
      Wilson, N., Webster-Brown, J., Brown, K., 2007.Controls on Stibnite Precipitation at Two New Zealand Geothermal Power Stations.Geothermics, 36(4):330-347. doi: 10.1016/j.geothermics.2007.04.001
      Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      Wu, Z.H., Ye, P.S., Wu, Z.H., et al., 2014.LA-ICP-MS Zircon U-Pb Ages of Tectonic-Thermal Events in the Yalaxiangbo Dome of Tethys Himalayan belt. Geological Bulletin of China, 33(5):595-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201405001
      Xie, Y.L., Hou, Z., Goldfarb, R.J., et al., 2016.Rare Earth Element Deposits in China.Society of Economic Geologists, 18:115-136.
      Xie, Y.L., Li, L.M., Wang, B.G., et al., 2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link. Ore Geology Reviews, 80:891-909. doi: 10.1016/j.oregeorev.2016.08.007
      Xie, Y. L., Wang, B. G., Guo, X., et al., 2014. Fluid Inclusion Study of Pegmatite in Zhaxikang Pb-Zn-Sb Polymetallic Deposit, Tibet, China. Acta Geologica Sinica(English Edition), 88(Suppl.2):1183-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WFHYXW592465
      Yang, Z. M., Cook, D. R., 2019. Porphyry Copper Deposits in China.Economic Geology, Special Publication(in press).
      Yang, Z. S., Hou, Z. Q., Gao, W., et al., 2006. Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System.Acta Geologica Sinica, 80(9):1377-1391(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609013
      Yang, Z. S., Hou, Z. Q., Meng, X. J., et al., 2009. Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212. doi: 10.1016/j.oregeorev.2009.03.005
      Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1-2):1-131. doi: 10.1016/j.earscirev.2005.05.004
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
      Zakaznova-Iakovleva, V. P., Migdisov, A. A., Zakaznova-Iakovlevaa, V. P., et al., 2001. An Experimental Study of Stibnite Solubility in Gaseous Hydrogen Sulphide from 200 to 320℃.Geochimica et Cosmochimica Acta, 65(2):289-298. doi: 10.1016/S0016-7037(00)00523-8
      Zhai, W., Sun, X.M., Yi, J.Z., et al., 2014.Geology, Geochemistry, and Genesis of Orogenic Gold-Antimony Mineralization in the Himalayan Orogen, South Tibet, China.Ore Geology Reviews, 58:68-90. doi: 10.1016/j.oregeorev.2013.11.001
      Zhai, W., Zheng, S.Q., Sun, X.M., et al., 2018.He-Ar Isotope Compositions of Orogenic Mazhala Au-Sb and Shalagang Sb Deposits in Himalayan Orogeny, Southern Tibet:Constrains to Ore-Forming Fluid Origin.Acta Petrologica Sinica, 34(12):3525-3538(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812005.htm
      Zhang, H. F., Harris, N., Parrish, R., et al., 2005. Geochemistry of North Himalayan Leucogranites:Regional Comparison, Petrogenesis and Tectonic Implications. Earth Science, 30(3):275-288(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200503003.htm
      Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2011.Geologic Characteristic and Mineralization of Mazhala Gold-Antimony Deposit in Northern Himalaya.Gold, 32(1):20-24(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201101005
      Zhang, J. Y., Liao, Q. A., Li, D. W., et al., 2003. Laguigangri Leucogranites and Its Relation with Laguigangri Metamorphic Core Complex in Sajia, South Tibet.Earth Science, 28(6):695-701 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200306018
      Zhang, L. K., Zhang, Z., Li, G. M., et al., 2018. Rock Assem-blage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya.Earth Science, 43(8):2664-2683(in Chinese with English abstract).
      Zheng, Y.Y., Sun, X., Tian, L.M., et al., 2014.Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan. Geotectonica et Metallogenia, 38(1):108-118(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201401011
      董磊, 李光明, 李应栩, 等, 2016.藏南马扎拉地区玄武岩地球化学特征、成因及其地质意义.沉积与特提斯地质, 36(3):16-24. doi: 10.3969/j.issn.1009-3850.2016.03.003
      侯增谦, 莫宣学, 杨志明, 等, 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质, 33(2):340-351. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602013
      侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      侯增谦, 杨竹森, 徐文艺, 等, 2006b.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      李光明, 芮宗瑶, 2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学, 28(2):165-170. doi: 10.3969/j.issn.1001-1552.2004.02.008
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      李光明, 曾庆贵, 雍永源, 等, 2005.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义:以西藏弄如日金锑矿床为例.矿床地质, 24(6):595-602. doi: 10.3969/j.issn.0258-7106.2005.06.003
      李金高, 王全海, 陈健坤, 等, 2002.西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究.成都理工学院学报, 29(5):533-538. doi: 10.3969/j.issn.1671-9727.2002.05.011
      李应栩, 李光明, 董磊, 等, 2018.西藏马扎拉金矿区外围地质特征与找矿方向.沉积与特提斯地质, 38(3):90-100. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201803010
      林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
      刘汉彬, 金贵善, 李军杰, 等, 2013.铀矿地质样品的稳定同位素组成测试方法.世界核地质科学, 30(3):174-179. doi: 10.3969/j.issn.1672-0636.2013.03.009
      莫儒伟, 孙晓明, 翟伟, 等, 2013.藏南马扎拉金锑矿床成矿流体地球化学和成矿机制.岩石学报, 29(4):1427-1438. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304025
      聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009
      卿成实, 丁俊, 李应栩, 等, 2014.马扎拉金锑矿元素组合异常及找矿方向.金属矿山, (12):134-137. http://d.old.wanfangdata.com.cn/Periodical/jsks201412029
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      杨竹森, 侯增谦, 高伟, 等, 2006.藏南拆离系锑金成矿特征与成因模式.地质学报, 80(9):1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013
      翟伟, 郑思琦, 孙晓明, 等, 2018.藏南喜马拉雅造山带造山型马扎拉Au-Sb矿床和沙拉岗Sb矿床流体包裹体He-Ar同位素组成:对成矿流体来源的制约.岩石学报, 34(12):3525-3538. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201812005
      张宏飞, Harris, N., Parrish, R., 等, 2005.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义.地球科学, 30(3):275-288. http://earth-science.net/WebPage/Article.aspx?id=1410
      张建芳, 郑有业, 张刚阳, 等, 2011.西藏北喜马拉雅马扎拉金锑矿床地质特征及成矿作用.黄金, 32(1):20-24. doi: 10.3969/j.issn.1001-1277.2011.01.005
      张金阳, 廖群安, 李德威, 等, 2003.藏南萨迦拉轨岗日淡色花岗岩特征及与变质核杂岩的关系.地球科学, 28(6):695-701. doi: 10.3321/j.issn:1000-2383.2003.06.018
      张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. http://earth-science.net/WebPage/Article.aspx?id=3904
      郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011
    • dqkx-44-6-1998-Table.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)  / Tables(3)

      Article views (5672) PDF downloads(116) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return