Citation: | Xie Yuling, Yang Kejun, Li Yingxu, Li Guangming, Qu Yunwei, Dong Lei, 2019. Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of OreForming Fluids and The Origin of Gold and Antimony. Earth Science, 44(6): 1998-2016. doi: 10.3799/dqkx.2019.122 |
Aikman, A.B., Harrison, T.M., Lin, D., 2008.Preliminary Results from the Yala-Xiangbo Leucogranite Dome, SE Tibet.Himalayan Journal of Sciences, 2(4):91. doi: 10.3126/hjs.v2i4.809
|
Anderson, T.F., Arthur, M.A., 1983.Stable Isotopes of Oxygen and Carbon and Their Application to Sedimentologic and Paleoenvironmental Problems. In: Anderson, T. F., Arthur, M.A., eds., Stable Isotopes in Sedimentary Geology.Society for Sedimentary Geology, Tulsa, Oklahoma.
|
Baker, A.J., Fallick, A.E., 1989.Evidence from Lewisian Limestones for Isotopically Heavy Carbon in Two-Thousand-Million-Year-Old Sea Water.Nature, 337:352-354. doi: 10.1038/337352a0
|
Boyle, R.W., Jonasson, I.R., 1984. The Geochemistry of Antimony and Its Use as an Indicator Element in Geochemical Prospecting.Journal of Geochemical Exploration, 20(3):223-302. doi: 10.1016/0375-6742(84)90071-2
|
Burg, J.P., Chen, G.M., 1984.Tectonics and Structural Zonation of Southern Tibet, China.Nature, 311:219-223. doi: 10.1038/311219a0
|
Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465):1702-1703. doi: 10.1126/science.133.3465.1702
|
Deines, P., Gold, D. P., 1973. The Isotopic Composition of Carbonatite and Kimberlite Carbonates and Their Bearing on the Isotopic Composition of Deep-Seated Carbon.Geochimica et Cosmochimica Acta, 37(7):1709-1733. doi: 10.1016/0016-7037(73)90158-0
|
Diedesch, T. F., Jessup, M. J., Cottle, J. M., et al., 2016. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome.Lithosphere, 8(5):480-504. doi: 10.1130/L506.1
|
Dong, L., Li, G. M., Li, Y. X., et al., 2016. Basalts from the Mazhala Area in Southern Xizang:Geochemistry, Petrogenesis and Geological Implications.Sedimentary Geology and Tethyan Geology, 36(3):16-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD201603003.htm
|
Fu, J.G., Li, G.M., Wang, G.H., et al., 2017.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome. International Journal of Earth Sciences, 106(5):1581-1596. doi: 10.1007/s00531-016-1368-2
|
Gehrels, G.E., Yin, A., Wang, X.F., 2003.Magmatic History of the Northeastern Tibetan Plateau.Journal of Geophysical Research:Solid Earth, 108(B9). https://doi.org/10.1029/2002jb001876
|
Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2):360-376. doi: 10.1016/j.gr.2011.07.027
|
Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202.
|
Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites.Tectonics, 13(6):1537-1546. doi: 10.1029/94TC01611
|
Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites.Geological Society, London, Special Publications, 74(1):391-400. https://doi.org/10.1144/gsl.sp.1993.074.01.26
|
Harrison, M.T., Grove, M., Mckeegan, K.D., et al., 1999.Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya.Journal of Petrology, 40(1):3-19. doi: 10.1093/petroj/40.1.3
|
Hou, Z. Q., Cook, N. J., Zaw, K., 2009. Metallogenesis of the Tibetan Collisional Orogen. Ore Geology Reviews, 36(1-3):1. doi: 10.1016/j.oregeorev.2009.07.002
|
Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a.Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau:Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2):340-351(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200602013.htm
|
Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358 (in Chinese with English abstract).
|
Hou, Z.Q, Qu, X.M, Yang, Z.S, et al., 2006c.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651 (in Chinese with English abstract).
|
Hou, Z.Q., Zhang, H.R., 2015.Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain.Ore Geology Reviews, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026
|
Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen.Earth and Planetary Science Letters, 349-350:38-52. doi: 10.1016/j.epsl.2012.06.030
|
Jeffrey, L., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147
|
Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China.Ore Geology Reviews, 36(1-3):160-173. doi: 10.1016/j.oregeorev.2009.03.006
|
Jochum, K. P., Hofmann, A. W., 1997. Constraints on Earth Evolution from Antimony in Mantle-Derived Rocks. Chemical Geology, 139(1-4):39-49. doi: 10.1016/S0009-2541(97)00032-6
|
Jochum, K.P., Verma, S.P., 1996.Extreme Enrichment of Sb, Tl and Other Trace Elements in Altered MORB.Chemical Geology, 130(3-4):289-299. doi: 10.1016/0009-2541(96)00014-9
|
Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2): https://doi.org/10.1029/2009tc002551
|
Li, G.M., Rui, Z.Y., 2004.Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise Metallogenic Belt, Southern Xizang.Geotectonica et Metallogenia, 28(2):165-170(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200402008
|
Li, G.M., Zeng, Q.G., Yong, Y.Y., et al., 2005.Discovery of Epithermal Au-Sb Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance:Case Study of Longruri Au-Sb Deposit. Mineral Deposits, 24(6):595-602(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200506002.htm
|
Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
|
Li, J.G., Wang, Q.H., Chen, J.K., et al., 2002.Study of Metallogenic and Prospecting Models for the Shalagang Antimony Deposit, Gyangze, Tibet.Journal of Chengdu Universityof Technology, 29(5):533-538(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200205011
|
Li, Y.X., Li, G.M., Dong, L., et al., 2018.Geology and Exploration Potential of the Mazhala Gold Deposit, Cuomei, Xizang:An Approach. Sedimentary Geology and Tethyan Geology, 38(3):90-100(in Chinese with English abstract).
|
Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet. Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002
|
Liu, H.B., Jin, G.S., Li, J.J., et al., 2013.Determination of Stable Isotope Composition in Uranium Geological Samples.World Nuclear Geoscience, 30(3):174-179(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201303009
|
Matsuhisa, Y., Goldsmith, J.R., Clayton, R.N., 1979.Oxygen Isotopic Fractionation in the System Quartz-Albite-Anorthite-Water. Geochimica et Cosmochimica Acta, 43(7):1131-1140. doi: 10.1016/0016-7037(79)90099-1
|
Mo, R. W., Sun, X. M., Zhai, W., et al., 2013. Ore-Forming Fluid Geochemistry and Metallogenic Mechanism from Mazhala Gold-Antimony Deposit in Southern Tibet, China. Acta Petrologica Sinica, 29(4):1427-1438(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304025
|
Nie, F.J., Hu, P., Jiang, S.H., et al., 2005.Type and Temporal-Spatial Distribution of Gold and Antimony Deposits(Prospects) in Southern Tibet, China.Acta Geologica Sinica, 79(3):373-385(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009
|
Pearson, O.N., DeCelles, P.G., 2005.Structural Geology and Regional Tectonic Significance of the Ramgarh Thrust, Himalayan Fold-Thrust Belt of Nepal. Tectonics, 24(4). https://doi.org/10.1029/2003tc001617
|
Qing, C.S., Ding, J., Li, Y.X., et al., 2014.Element Combination Anomalies and Prospecting Direction in Mazhala Gold-Antimony Deposit. Metal Mine, (12):134-137(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201412029
|
Raymond, J., Williams-Jones, A.E., Clark, J.R., 2005.Mineralization Associated with Scale and Altered Rock and Pipe Fragments from the Berlín Geothermal Field, El Salvador; Implications for Metal Transport in Natural Systems.Journal of Volcanology and Geothermal Research, 145(1-2):81-96. doi: 10.1016/j.jvolgeores.2005.01.003
|
Reyes, A.G., Trompetter, W.J., Britten, K., et al., 2003.Mineral Deposits in the Rotokawa Geothermal Pipelines, New Zealand. Journal of Volcanology and Geothermal Research, 119(1-4):215-239. doi: 10.1016/S0377-0273(02)00355-4
|
Robb, L., 2007.Introduction to Ore-Forming Processes. Blackwell Publishing, England.
|
Spycher, N.F., Reed, M.H., 1989.As (Ⅲ) and Sb (Ⅲ) Sulfide Complexes:An Evaluation of Stoichiometry and Stability from Existing Experimental Data.Geochimica et Cosmochimica Acta, 53(9):2185-2194. doi: 10.1016/0016-7037(89)90342-6
|
Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China.Ore Geology Reviews, 36(1-3):235-249. doi: 10.1016/j.oregeorev.2009.05.002
|
Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. doi: 10.2113/gsecongeo.69.6.843
|
Visonà, D, Lombardo, B., 2002. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leucogranite Genesis by Isobaric Heating? Lithos, 62(3-4):125-150. doi: 10.1016/S0024-4937(02)00112-3
|
Wagner, T., Lee, J., Hacker, B.R., et al., 2010.Kinematics and Vorticity in Kangmar Dome, Southern Tibet:Testing Midcrustal Channel Flow Models for the Himalaya.Tectonics, 29(6). https://doi.org/10.1029/2010tc002746
|
Wang, J.H., Yin, A., Harrison, T.M., et al., 2001.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1-2):123-133. https://doi.org/10.1016/s0012-821x(01)00315-6
|
Wilson, N., Webster-Brown, J., Brown, K., 2007.Controls on Stibnite Precipitation at Two New Zealand Geothermal Power Stations.Geothermics, 36(4):330-347. doi: 10.1016/j.geothermics.2007.04.001
|
Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
|
Wu, Z.H., Ye, P.S., Wu, Z.H., et al., 2014.LA-ICP-MS Zircon U-Pb Ages of Tectonic-Thermal Events in the Yalaxiangbo Dome of Tethys Himalayan belt. Geological Bulletin of China, 33(5):595-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201405001
|
Xie, Y.L., Hou, Z., Goldfarb, R.J., et al., 2016.Rare Earth Element Deposits in China.Society of Economic Geologists, 18:115-136.
|
Xie, Y.L., Li, L.M., Wang, B.G., et al., 2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link. Ore Geology Reviews, 80:891-909. doi: 10.1016/j.oregeorev.2016.08.007
|
Xie, Y. L., Wang, B. G., Guo, X., et al., 2014. Fluid Inclusion Study of Pegmatite in Zhaxikang Pb-Zn-Sb Polymetallic Deposit, Tibet, China. Acta Geologica Sinica(English Edition), 88(Suppl.2):1183-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WFHYXW592465
|
Yang, Z. M., Cook, D. R., 2019. Porphyry Copper Deposits in China.Economic Geology, Special Publication(in press).
|
Yang, Z. S., Hou, Z. Q., Gao, W., et al., 2006. Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System.Acta Geologica Sinica, 80(9):1377-1391(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609013
|
Yang, Z. S., Hou, Z. Q., Meng, X. J., et al., 2009. Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212. doi: 10.1016/j.oregeorev.2009.03.005
|
Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1-2):1-131. doi: 10.1016/j.earscirev.2005.05.004
|
Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
|
Zakaznova-Iakovleva, V. P., Migdisov, A. A., Zakaznova-Iakovlevaa, V. P., et al., 2001. An Experimental Study of Stibnite Solubility in Gaseous Hydrogen Sulphide from 200 to 320℃.Geochimica et Cosmochimica Acta, 65(2):289-298. doi: 10.1016/S0016-7037(00)00523-8
|
Zhai, W., Sun, X.M., Yi, J.Z., et al., 2014.Geology, Geochemistry, and Genesis of Orogenic Gold-Antimony Mineralization in the Himalayan Orogen, South Tibet, China.Ore Geology Reviews, 58:68-90. doi: 10.1016/j.oregeorev.2013.11.001
|
Zhai, W., Zheng, S.Q., Sun, X.M., et al., 2018.He-Ar Isotope Compositions of Orogenic Mazhala Au-Sb and Shalagang Sb Deposits in Himalayan Orogeny, Southern Tibet:Constrains to Ore-Forming Fluid Origin.Acta Petrologica Sinica, 34(12):3525-3538(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812005.htm
|
Zhang, H. F., Harris, N., Parrish, R., et al., 2005. Geochemistry of North Himalayan Leucogranites:Regional Comparison, Petrogenesis and Tectonic Implications. Earth Science, 30(3):275-288(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200503003.htm
|
Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2011.Geologic Characteristic and Mineralization of Mazhala Gold-Antimony Deposit in Northern Himalaya.Gold, 32(1):20-24(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201101005
|
Zhang, J. Y., Liao, Q. A., Li, D. W., et al., 2003. Laguigangri Leucogranites and Its Relation with Laguigangri Metamorphic Core Complex in Sajia, South Tibet.Earth Science, 28(6):695-701 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200306018
|
Zhang, L. K., Zhang, Z., Li, G. M., et al., 2018. Rock Assem-blage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya.Earth Science, 43(8):2664-2683(in Chinese with English abstract).
|
Zheng, Y.Y., Sun, X., Tian, L.M., et al., 2014.Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan. Geotectonica et Metallogenia, 38(1):108-118(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201401011
|
董磊, 李光明, 李应栩, 等, 2016.藏南马扎拉地区玄武岩地球化学特征、成因及其地质意义.沉积与特提斯地质, 36(3):16-24. doi: 10.3969/j.issn.1009-3850.2016.03.003
|
侯增谦, 莫宣学, 杨志明, 等, 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质, 33(2):340-351. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602013
|
侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
|
侯增谦, 杨竹森, 徐文艺, 等, 2006b.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
|
李光明, 芮宗瑶, 2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学, 28(2):165-170. doi: 10.3969/j.issn.1001-1552.2004.02.008
|
李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
|
李光明, 曾庆贵, 雍永源, 等, 2005.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义:以西藏弄如日金锑矿床为例.矿床地质, 24(6):595-602. doi: 10.3969/j.issn.0258-7106.2005.06.003
|
李金高, 王全海, 陈健坤, 等, 2002.西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究.成都理工学院学报, 29(5):533-538. doi: 10.3969/j.issn.1671-9727.2002.05.011
|
李应栩, 李光明, 董磊, 等, 2018.西藏马扎拉金矿区外围地质特征与找矿方向.沉积与特提斯地质, 38(3):90-100. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201803010
|
林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
|
刘汉彬, 金贵善, 李军杰, 等, 2013.铀矿地质样品的稳定同位素组成测试方法.世界核地质科学, 30(3):174-179. doi: 10.3969/j.issn.1672-0636.2013.03.009
|
莫儒伟, 孙晓明, 翟伟, 等, 2013.藏南马扎拉金锑矿床成矿流体地球化学和成矿机制.岩石学报, 29(4):1427-1438. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304025
|
聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009
|
卿成实, 丁俊, 李应栩, 等, 2014.马扎拉金锑矿元素组合异常及找矿方向.金属矿山, (12):134-137. http://d.old.wanfangdata.com.cn/Periodical/jsks201412029
|
吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
|
杨竹森, 侯增谦, 高伟, 等, 2006.藏南拆离系锑金成矿特征与成因模式.地质学报, 80(9):1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013
|
翟伟, 郑思琦, 孙晓明, 等, 2018.藏南喜马拉雅造山带造山型马扎拉Au-Sb矿床和沙拉岗Sb矿床流体包裹体He-Ar同位素组成:对成矿流体来源的制约.岩石学报, 34(12):3525-3538. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201812005
|
张宏飞, Harris, N., Parrish, R., 等, 2005.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义.地球科学, 30(3):275-288. http://earth-science.net/WebPage/Article.aspx?id=1410
|
张建芳, 郑有业, 张刚阳, 等, 2011.西藏北喜马拉雅马扎拉金锑矿床地质特征及成矿作用.黄金, 32(1):20-24. doi: 10.3969/j.issn.1001-1277.2011.01.005
|
张金阳, 廖群安, 李德威, 等, 2003.藏南萨迦拉轨岗日淡色花岗岩特征及与变质核杂岩的关系.地球科学, 28(6):695-701. doi: 10.3321/j.issn:1000-2383.2003.06.018
|
张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. http://earth-science.net/WebPage/Article.aspx?id=3904
|
郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011
|
![]() |
![]() |