• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 4
    Apr.  2020
    Turn off MathJax
    Article Contents
    Xiao Xun, Shi Wenguang, Wang Quanrong, 2020. Effect of Mixing Effect and Scale-Dependent Dispersion for Radial Solute Transport near the Injection Well. Earth Science, 45(4): 1439-1446. doi: 10.3799/dqkx.2019.124
    Citation: Xiao Xun, Shi Wenguang, Wang Quanrong, 2020. Effect of Mixing Effect and Scale-Dependent Dispersion for Radial Solute Transport near the Injection Well. Earth Science, 45(4): 1439-1446. doi: 10.3799/dqkx.2019.124

    Effect of Mixing Effect and Scale-Dependent Dispersion for Radial Solute Transport near the Injection Well

    doi: 10.3799/dqkx.2019.124
    • Received Date: 2019-05-25
    • Publish Date: 2020-04-15
    • Radial solute transport refers to a dispersive transport process of a solute under a radial flow field, which has been widely used to describe the solute transport around the well in aquifer remediation. However, in the previous studies, the mixing effect in the wellbore has often been ignored, assuming that the wellbore is infinitely small or the concentration of the wellbore is constant during the injection period. In this study, a new mathematical model to describe radial solute transport of the injection well is proposed considering both the mixing effect and scale effect. The analytical solution is derived by the Laplace transform and Stehfest numerical inversion method. The linear dispersion model with mixing effect (LDM) is compared with the linear dispersion model with no-mixing effect (LDNM) to illustrate the mixing effect and the scale effect. Moreover, the robustness of the new model is tested using the experimental data. The results show that mixing effect and scale effect have a great influence on radial solute transport. Specifically, the greater mixing effect results in the lower the breakthrough curves (BTCs) in both wellbore and aquifer, the longer time for the solute concentration to reach its peak. With the well radius increasing, the difference between the models with and without mixing effect is more obvious. Additionally, with the increase of scale-dependent dispersion, the arrival time of the BTC peak values decreases. LDM (linear dispersion model with mixing effect) is more reasonable than LDNM (linear dispersion model with no-mixing effect) in describing radial solute transport.

       

    • loading
    • Bharati, V. K., Singh, V. P., Sanskrityayn, A., et al., 2017. Analytical Solution of Advection-Dispersion Equation with Spatially Dependent Dispersivity. Journal of Engineering Mechanics, 143(11):04017126. https://doi.org/10.1061/(asce)em.1943-7889.0001346
      Chen, C. S., 1987. Analytical Solutions for Radial Dispersion with Cauchy Boundary at Injection Well. Water Resources Research, 23(7):1217-1224. https://doi.org/10.1029/wr023i007p01217
      Chen, H. T., Chen, C.O.K., 1988. Hybrid Laplace Transform/Finite Difference Method for Transient Heat Conduction Problems. International Journal for Numerical Methods in Engineering, 26(6):1433-1447. https://doi.org/10.1002/nme.1620260613
      Chen, H.T., Chen, T.M., Chen, C.O.K., 1987. Hybrid Laplace Transform/Finite Element Method for One-Dimensional Transient Heat Conduction Problems. Computer Methods in Applied Mechanics and Engineering, 63(1):83-95. https://doi.org/10.1029/WR023i007p01217
      Chen, J. S., Liu, C. W., Chen, C. S., et al., 1996. A Laplace Transform Solution for Tracer Tests in a Radially Convergent Flow Field with Upstream Dispersion. Journal of Hydrology, 183(3-4):263-275. https://doi.org/10.1016/0022-1694(95)02972-9
      Cheng, J.M., 2002.Analysis on Field Scale Effect of Dispersivity in Consideration of Relative Reliability Level of Data. Journal of Hydraulic Engineering, 33(2):90-94(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200202016
      de Hoog F.R., Knight, J.H., Stokes, A.N., 1982.An Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical Computing, 3(3):357-366. https://doi.org/10.1137/0903022
      Dubner, H., Abate, J., 1968. Numerical Inversion of Laplace Transforms by Relating Them to the Finite Fourier Cosine Transform. Journal of the ACM, 15(1):115-123. https://doi.org/10.1145/321439.321446
      Gao, G.Y., Feng, S.Y., Huo, Z.L., et al., 2009.Semi-Analytical Solution for Solute Radial Transport Dynamic Model with Scale-Dependent Dispersion. Journal of Hydrodynamics(Ser.A), 24(2):156-163(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200902005
      Gelhar, L. W., Welty, C., Rehfeldt, K. R., 1992. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resources Research, 28(7):1955-1974. https://doi.org/10.1029/92wr00607
      Gu, H.C., Wang, Q.R., Zhan, H.B., 2018. An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well. Earth Science(in Chinese with English abstract). http://kns.cnki.net/kcms/detail/42.1874.p.20181116.0912.008.html
      Han, C., Kang, J., Choe, J., 2003. Finite Difference Modeling for Scale-Dependent Dispersivity in a Fractured Medium. Energy Sources, 25(4):265-278. https://doi.org/10.1080/00908310390142316
      Huang, J. Q., Liu, C. Q., 1986. Analytical Solution of Partial Differential Equations for Radial Transport of a Solute in Double Porous Media. Applied Mathematics and Mechanics, 7(4):327-336. https://doi.org/10.1007/bf01898222
      Lai, K. H., Liu, C. W., Liang, C. P., et al., 2016. A Novel Method for Analytically Solving a Radial Advection-Dispersion Equation. Journal of Hydrology, 542:532-540. https://doi.org/10.1016/j.jhydrol.2016.09.027
      Li, G.M., Chen, C.X., 1995.Fractal Geometry and Estimation of Scale-Dependent Dispersivity in Geologic Media. Earth Science, 20(4):405-409(in Chinese with English abstract).
      McGuire, J. T., Long, D. T., Klug, M. J., et al., 2002. Evaluating Behavior of Oxygen, Nitrate, and Sulfate during Recharge and Quantifying Reduction Rates in a Contaminated Aquifer. Environmental Science & Technology, 36(12):2693-2700. https://doi.org/10.1021/es015615q
      Mishra, S., Parker, J. C., 1990. Analysis of Solute Transport with a Hyperbolic Scale-Dependent Dispersion Model. Hydrological Processes, 4(1):45-57. https://doi.org/10.1002/hyp.3360040105
      Moench, A. F., Ogata, A., 1981. A Numerical Inversion of the Laplace Transform Solution to Radial Dispersion in a Porous Medium. Water Resources Research, 17(1):250-252. https://doi.org/10.1029/wr017i001p00250
      Novakowski, K. S., 1992a. An Evaluation of Boundary Conditions for One-Dimensional Solute Transport:1. Mathematical Development. Water Resources Research, 28(9):2399-2410. https://doi.org/10.1029/92wr00593
      Novakowski, K. S., 1992b. An Evaluation of Boundary Conditions for One-Dimensional Solute Transport:2. Column Experiments. Water Resources Research, 28(9):2411-2423. https://doi.org/10.1029/92wr00592
      Ogata, A., 1958. Dispersion in Porous Media(Dissertation). Northwestern University, Evanston, lllinois.
      Phanikumar, M. S., McGuire, J. T., 2010. A Multi-Species Reactive Transport Model to Estimate Biogeochemical Rates Based on Single-Well Push-Pull Test Data. Computers & Geosciences, 36(8):997-1004. https://doi.org/10.1016/j.cageo.2010.04.001
      Pickens, J. F., Grisak, G. E., 1981a. Modeling of Scale-Dependent Dispersion in Hydrogeologic Systems. Water Resources Research, 17(6):1701-1711. https://doi.org/10.1029/wr017i006p01701
      Pickens, J. F., Grisak, G. E., 1981b. Scale-Dependent Dispersion in a Stratified Granular Aquifer. Water Resources Research, 17(4):1191-1211. https://doi.org/10.1029/wr017i004p01191
      Ren, L., 1994.A Hybrid Laplace Transform Finite Element Method for Solute Radial Dispersion Problem in Subsurface Flow. Journal of Hydrodynamics(Ser.A), 9(1):37-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400399541
      Schapery, R.A., 1962. Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis. Proc. Fourth USN at Congr. Appl. Mech., 2:1075-1085. http://cn.bing.com/academic/profile?id=404faa0d2b48fffb86324f69c0e6e983&encoded=0&v=paper_preview&mkt=zh-cn
      Schulze-Makuch, D., 2005. Longitudinal Dispersivity Data and Implications for Scaling Behavior. Ground Water, 43(3):443-456. https://doi.org/10.1111/j.1745-6584.2005.0051.x
      Stehfest, H., 1970a. Algorithm 368:Numerical Inversion of Laplace Transforms[D5]. Communications of the ACM, 13(1):47-49. https://doi.org/10.1145/361953.361969
      Stehfest, H., 1970b. Remark on Algorithm 368:Numerical Inversion of Laplace Transforms. Communications of the ACM, 13(10):624. https://doi.org/10.1145/355598.362787
      Tang, D. H., Babu, D. K., 1979. Analytical Solution of a Velocity Dependent Dispersion Problem. Water Resources Research, 15(6):1471-1478. https://doi.org/10.1029/wr015i006p01471
      Valocchi, A. J., 1986. Effect of Radial Flow on Deviations from Local Equilibrium during Sorbing Solute Transport through Homogeneous Soils. Water Resources Research, 22(12):1693-1701. https://doi.org/10.1029/wr022i012p01693
      Wang, Q., Shi, W., Zhan, H., et al., 2018. Models of Single-Well Push-Pull Test with Mixing Effect in the Wellbore. Water Resources Research, 54(12):10155-10171. https://doi.org/10.1029/2018WR023317
      Wang, Q. R., Zhan, H. B., 2013. Radial Reactive Solute Transport in an Aquifer-Aquitard System. Advances in Water Resources, 61(11):51-61. https://doi.org/10.1016/j.advwatres.2013.08.013
      Wang, Q. R., Zhan, H. B., 2015. On Different Numerical Inverse Laplace Methods for Solute Transport Problems. Advances in Water Resources, 75:80-92. https://doi.org/10.1016/j.advwatres.2014.11.001
      Yates, S.R., 1990. An Analytical Solution for One-Dimensional Transport in Heterogeneous Porous Media. Water Resources Research, 26(10):2331-2338. https://doi.org/10.1029/wr026i010p02331
      You, K. H., Zhan, H. B., 2013. New Solutions for Solute Transport in a Finite Column with Distance-Dependent Dispersivities and Time-Dependent Solute Sources. Journal of Hydrology, 487(2):87-97. https://doi.org/10.1016/j.jhydrol.2013.02.027
      Zhang, D.S., Chang, A.D., Shen, B., et al., 2005.Quasi-Analytical Solution and Numerical Simulation for Advection-Dispersion Model of Adsorbed Solute Transport through Soils under Steady State Flow. Journal of Hydrodynamics(Ser.A), 20(2):226-232(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200502014
      成建梅, 2002.考虑可信度的弥散度尺度效应分析.水利学报, 33(2):90-94. doi: 10.3321/j.issn:0559-9350.2002.02.016
      高光耀, 冯绍元, 霍再林, 等, 2009.考虑弥散尺度效应的溶质径向运移动力学模型及半解析解.水动力学研究与进展(A辑), 24(2):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200902005
      顾昊琛, 王全荣, 詹红兵, 2018.非完整井下单井注抽试验数值模拟方法改进.地球科学. http://kns.cnki.net/kcms/detail/42.1874.p.20181116.0912.008.html
      李国敏, 陈崇希, 1995.空隙介质水动力弥散尺度效应的分形特征及弥散度初步估计.地球科学, 20(4):405-409. http://www.earth-science.net/article/id/232
      任理, 1994.地下水溶质径向弥散问题的混合拉普拉斯变换有限单元解.水动力学研究与进展(A辑), 9(1):37-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400399541
      张德生, 常安定, 沈冰, 等, 2005.土壤中吸附性溶质运移对流-弥散模型的准解析解及其数值模拟.水动力学研究与进展(A辑), 20(2):226-232. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz200502014
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(1)

      Article views (2163) PDF downloads(32) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return