• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 4
    Apr.  2020
    Turn off MathJax
    Article Contents
    Kuang Jian, Qi Shihua, Wang Shuai, Xiao Zhicai, Zhang Min, Zhao Xu, Gan Haonan, 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128
    Citation: Kuang Jian, Qi Shihua, Wang Shuai, Xiao Zhicai, Zhang Min, Zhao Xu, Gan Haonan, 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128

    Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications

    doi: 10.3799/dqkx.2019.128
    • Received Date: 2019-05-29
    • Publish Date: 2020-04-15
    • In this paper, it presents a case study of the high-temperature geothermal field in Huizhou, China to interpret the formation model of this geothermal field and that of Southeast China by integrating seismics, geochemistry and the zircon U-Pb age. It is found that the magmatic intrusion in the study area is mainly Yanshanian I-type granite with high differentiation and high heat-producing elements, which has been formed by the subduction and the retreat of Paleo-Pacific Plate. The subterranean magmatic intrusion is an integrated whole with thickness up to 3.5 km. The heat transfer from the mantle to the surface promoted by the high thermal conductivity of granite, and the heat generated by radioactive element decay in granite are two important causes for high temperature geothermal formation in Huizhou. The subterranean granite in the study area has high heat production and inestimable geothermal resources of hot dry rock. The geothermal output model of this study area is of great significance to the energy supply system in Huizhou and even the Southeast China.

       

    • loading
    • Bertani, R., 2012. Geothermal Power Generation in the World 2005-2010 Update Report. Geothermics, 41:1-29. https://doi.org/10.1016/j.geothermics.2011.10.001
      Bertani, R., 2016. Geothermal Power Generation in the World 2010-2014 Update Report. Geothermics, 60:31-43. https://doi.org/10.1016/j.geothermics.2015.11.003
      Brown, D.W., Duchane, D.V., Heiken, G., et al., 2012. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Springer Science & Business Media, Heidelberg.
      Deng, Y. F., Li, J. T., Peng, T. P., et al., 2019. Lithospheric Structure in the Cathaysia Block (South China) and Its Implication for the Late Mesozoic Magmatism. Physics of the Earth and Planetary Interiors, 291:24-34. https://doi.org/10.1016/j.pepi.2019.04.003
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Genter, A., Traineau, H., Dezayes, C., et al., 1995. Fracture Analysis and Reservoir Characterization of the Granitic Basement in the HDR Soultz Project (France). Geothermal Science & Technology, 4(3):189-214.
      Goldstein, B.A., Hill, A.J., Long, A., 2008. Hot Rocks in Australia-National Overview. ASEG Extended Abstracts, (1):1. https://doi.org/10.1071/aseg2009ab114
      Gong, J. F., John Chen, Y., 2014. Evidence of Lateral Asthenosphere Flow beneath the South China Craton Driven by Both Pacific Plate Subduction and the India-Eurasia Continental Collision. Terra Nova, 26(1):55-63. https://doi.org/10.1111/ter.12069
      Hasterok, D., Chapman, D. S. 2007. Continental Thermal Isostasy:2. Application to North America. Journal of Geophysical Research:Solid Earth, 112(B6). https://doi.org/10.1029/2006JB004664
      Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China:A New Data Set. Earth and Planetary Science Letters, 179(2):407-419. https://doi.org/10.1016/s0012-821x(00)00126-6
      Huang, S.P., 1992. Variations of Heat Flow and Crustal Thickness in the Continental Area of China. Chinese Journal of Geophysics, 35(4):441-450 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e3f12368b90cd684b3c47c6987628982&encoded=0&v=paper_preview&mkt=zh-cn
      Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 3:659. https://doi.org/10.1016/B0-08-043751-6/03035-8
      Lackey, J.S., Valley, J.W., Saleeby, J.B., 2005. Supracrustal Input to Magmas in the Deep Crust of Sierra Nevada Batholith:Evidence from High-δ18O Zircon. Earth and Planetary Science Letters, 235(1-2):315-330. https://doi.org/10.1016/j.epsl.2005.04.003
      Li, J. H., Dong, S. W., Cawood, P. A., et al., 2018. An Andean-Type Retro-Arc Foreland System beneath Northwest South China Revealed by SINOPROBE Profiling. Earth and Planetary Science Letters, 490:170-179. https://doi.org/10.1016/j.epsl.2018.03.008
      Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model. Geology, 35(2):179. https://doi.org/10.1130/g23193a.1
      Li, D.W., Wang, Y.X., 2015.Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11):1858-1869(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201511010
      Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2003. Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 4, 70. doi: 10.1016-j.immuni.2011.10.010/
      Lund, J. W., Boyd, T. L., 2016. Direct Utilization of Geothermal Energy 2015 Worldwide Review. Geothermics, 60:66-93. https://doi.org/10.1016/j.geothermics.2015.11.004
      Ma, C., Tang, Y.J., Ying, J.F., et al., 2019.Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4):1128-1142(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201904006
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Mao, X.P., Wang, X.W., Li, K.W., et al., 2018.Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11):4256-4266(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811039
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      Richards, H. G., Savage, D., Andrews, J. N., 1992. Granite-Water Reactions in an Experimental Hot Dry Rock Geothermal Reservoir, Rosemanowes Test Site, Cornwall, U.K.. Applied Geochemistry, 7(3):193-222. https://doi.org/10.1016/0883-2927(92)90038-5
      Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267. https://doi.org/10.1029/95rg01302
      Rybach, L., Buntebarth, G., 1984. The Variation of Heat Generation, Density and Seismic Velocity with Rock Type in the Continental Lithosphere. Tectonophysics, 103(1-4):335-344. https://doi.org/10.1016/0040-1951(84)90095-7
      Rybach, L., 1988. Determination of Heat Production Rate. Handbook of Terrestrial Heat Flow Density Determinations. Kluwer, Dordrecht.
      Sclater, J. G., Jaupart, C., Galson, D., 1980. The Heat Flow through Oceanic and Continental Crust and the Heat Loss of the Earth. Reviews of Geophysics, 18(1):269-311. https://doi.org/10.1029/rg018i001p00269
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block:Key Observations and Controversies. Gondwana Research, 23(4):1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      Wang, S.J., Hu, S.B., Wang, S.J., et al., 1999.The Geothermal Effect of Radioactive Heat Generation and Its Significance to Hydrocarbon Maturation in Tarim Basin. Petroleum Exploration and Development, 26(5):36-38, 5(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901060807
      Wedepohl, K.H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7):1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
      Wollenberg, H. A., Smith, A. R., 1987. Radiogenic Heat Production of Crustal Rocks:An Assessment Based on Geochemical Data. Geophysical Research Letters, 14(3):295-298. https://doi.org/10.1029/gl014i003p00295
      Wu, Y.B., Zheng, Y.F., 2004, Geogenic Mineralogy of Zircon and Its Restriction on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xi, Y. F., Wang, G. L., Liu, S., et al., 2018. The Formation of a Geothermal Anomaly and Extensional Structures in Guangdong, China:Evidence from Gravity Analyses. Geothermics, 72:225-231. https://doi.org/10.1016/j.geothermics.2017.11.009
      Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia:Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2):51-78. https://doi.org/10.1016/j.precamres.2007.04.010
      Yuan, Y.S., Ma, Y.S., Hu, S.B., et al., 2006.Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4):1118-1126(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200604025
      Zhang, J., Wang, B.Y., Tang, X.C., et al., 2018. Temperature Structure and Dynamic Background of Crust and Mantle beneath the High Heat Flow Area of the South China Continental Margin.Chinese Journal of Geophysics, 61(10):3917-3932(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201810003
      Zhao, P., Wang, J., Wang, J.A., et al., 1995. Characteristics of Heat Production Distribution in SE China. Acta Petrologica Sinica, 11(3), 292-305 (in Chinese with English abstract).
      Zhou, X.M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution. Episodes, 29(1):26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      黄少鹏, 1992.我国大陆地区大地热流与地壳厚度的变化.地球物理学报, 35(4):441-450. doi: 10.3321/j.issn:0001-5733.1992.04.006
      李德威, 王焰新, 2015.干热岩地热能研究与开发的若干重大问题.地球科学, 40(11):1858-1869. doi: 10.3799/dqkx.2015.166
      马超, 汤艳杰, 英基丰, 等, 2019.俯冲带岩浆作用与大陆地壳生长.地球科学, 44(4):1128-1142. doi: 10.3799/dqkx.2019.026
      毛小平, 汪新伟, 李克文, 等, 2018.地热田热量来源及形成主控因素.地球科学, 43(11):4256-4266. doi: 10.3799/dqkx.2018.210
      王社教, 胡圣标, 汪集晠, 等, 1999.塔里木盆地沉积层放射性生热的热效应及其意义.石油勘探与开发, 26(5):36-38, 5. doi: 10.3321/j.issn:1000-0747.1999.05.012
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      袁玉松, 马永生, 胡圣标, 等, 2006.中国南方现今地热特征.地球物理学报, 49(4):1118-1126. doi: 10.3321/j.issn:0001-5733.2006.04.025
      张健, 王蓓羽, 唐显春, 等, 2018.华南陆缘高热流区的壳幔温度结构与动力学背景.地球物理学报, 61(10):3917-3932. doi: 10.6038/cjg2018L0448
      赵平, 汪集, 汪缉安, 等, 1995.中国东南地区岩石生热率分布特征.岩石学报, 11(3), 292-305. doi: 10.3321/j.issn:1000-0569.1995.03.011
    • dqkx-45-4-1466-Table1-4.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (3578) PDF downloads(164) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return