• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 4
    Apr.  2020
    Turn off MathJax
    Article Contents
    Hu Rongguo, Zhao Yilai, Cai Yongfeng, Feng Zuohai, Liu Xijun, Zhou Zhihui, Sha Peizhe, 2020. Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi. Earth Science, 45(4): 1213-1226. doi: 10.3799/dqkx.2019.130
    Citation: Hu Rongguo, Zhao Yilai, Cai Yongfeng, Feng Zuohai, Liu Xijun, Zhou Zhihui, Sha Peizhe, 2020. Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi. Earth Science, 45(4): 1213-1226. doi: 10.3799/dqkx.2019.130

    Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi

    doi: 10.3799/dqkx.2019.130
    • Received Date: 2019-05-30
    • Publish Date: 2020-04-15
    • The Dachang Sn-polymetallic ore deposit,Guangxi,is one of the largest tin deposits in the world. The granite porphyry occurs in the eastern side of the Tongkeng-Changpo-Bali-Longtoushan area,which is mainly controlled by nearly SN extensional tectonics and has superimposed and reformed the ore bodies formed in the early stage. To further evaluate the petrogenesis and associated hydrothermal mineralization of the granite porphyry,detailed electron microprobe analyses were performed on three modes of biotite occurrence:inclusions enclosed in quartz,phenocrysts and matrix as one of rock-forming minerals. The biotites of different occurrences are all classified as magmatic ferrobiotites,reflecting that their host rock has high basicity. Biotite matrixes contain higher FeOt,MnO and Li2O but lower MgO and TiO2 than those occur as phenocryst and inclusion. The estimated crystallization temperatures for phenocryst and inclusion biotites are 688-715℃ and pressure conditions range from 1.7 to 2.3 kbar,equivalent to emplacement depth of 6.3-8.4 km. In contrast,the calculated crystallization temperatures for matrix biotites are 630-673℃ and pressure conditions range from 1.6 to 2.0 kbar,equivalent to emplacement depth of 6.0-7.4 km. Systematic differences in oxygen fugacity between biotites related to inclusion (-17.0 to -16.6),phenocryst (-17.0 to -16.1) and matrix (-19.0 to -17.4) are found,which are characterized by a trend of decreasing oxygen fugacities in the direction of magma upwelling,suggesting that the diagenetic conditions change from relative oxidizing condition to reducing condition. Magmatic biotite composition is useful in the calculation of the halogen fugacity in magma during its crystallization,which are represented by lg(fH2O/fHF)Fluid,lg(fH2O/fHCl)Fluid and lg(fHF/fHCl)Fluid values. These values for phenocrystys are 3.41-3.82,3.78-4.07 and -0.54 to -0.17 respectively; for inclusions are 3.90-4.11,3.86-4.11 and -0.74 to -0.43 respectively; and for matrix are 3.90-4.39,3.85-4.96 and -0.61-0.25 respectively,which indicates that the coexisting hydrothermal fluids associated with phenocrysty,inclusion and matrix biotite crystallization are not continuous episode but differences in composition. The changes in the composition of biotites regarding to inclusion,phenocrysts and matrix,indicate that the early stage of the magma crystallization is characterized by high temperature,high basicity and low oxygen fugacity. These characteristics could have been beneficial to the activation,migration and concentration of the Sn element,as well as to further transformation on the earlier formed deposit.

       

    • loading
    • Abdel-Rahman, A.F.M., 1994.Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas.Journal of Petrology, 35(2): 525-541.https://doi.org/10.1093/petrology/35.2.525
      Ayati, F., Yavuz, F., Noghreyan, M., et al., 2008.Chemical Characteristics and Composition of Hydrothermal Biotite from the Dalli Porphyry Copper Prospect, Arak, Central Province of Iran.Mineralogy and Petrology, 94(1-2): 107-122.https://doi.org/10.1007/s00710-008-0006-5
      Bhalla, P., Holtz, F., Linnen, R.L., et al., 2005.Solubility of Cassiterite in Evolved Granitic Melts: Effect of T, fo2, and Additional Volatiles.Lithos, 80(1-4): 387-400.https://doi.org/10.1016/j.lithos.2004.06.014
      Cai, M.H., He, L.Q., Liu, G.Q., et al., 2006.SHRIMP Zircon U-Pb Dating of the Intrusive Rocks in the Dachang Tin-Polymetallic Ore Field, Guangxi and Their Geological Significance.Geological Review, 52(3):409-414(in Chinese with English abstract).
      Cai, M.H., Mao, J.W., Liang, T., et al., 2007.The Origin of the Tongkeng-Changpo Tin Deposit, Dachang Metal District, Guangxi, China: Clues from Fluid Inclusions and He Isotope Systematics.Mineralium Deposita, 42(6): 613-626.https://doi.org/10.1007/s00126-007-0127-5
      Chen, Y.C., Huang, M.Z., Xu, J., et al., 1985.Geological Features and Metallogenetic Series of the Dachang Cassiterite-Sulfide-Polymetallic Belt.Acta Geologica Sinica, 59(3):228-240(in Chinese with English abstract).
      Ding, X.S., 1988.Study of Typomorphic Characteristics of Micas from Grantioids in Central-Southern Xizang and Their Geological Significance.Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 21(1):33-50(in Chinese with English abstract).
      Fan, S.K., Li, X.D., Cheng, Y.S., et al., 2010.Geochemical Features of Vein Rocks and Their Significance to Structure and Mineralization in the Dachang Ore District, Guangxi Province.Geology and Exploration, 46(5):828-835(in Chinese with English abstract).
      Fu, M., Kwak, T.A.P., Mernagh, T.P., 1993.Fluid Inclusion Studies of Zoning in the Dachang Tin-Polymetallic Ore Field, People's Republic of China.Economic Geology, 88(2): 283-300.https://doi.org/10.2113/gsecongeo.88.2.283
      Fu, J.B., Xu, W.Y., Zhou, W.N., et al., 1983.The Characteristics of Biotite from Longxianggai Pluton in Dachang of Guangxi and Its Geological Significance.Mineral Resources and Geology, (3):89-103(in Chinese with English abstract).
      Gong, L., Chen, H.Y., Wang, Y.F., et al., 2018.Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit:Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China.Earth Science, 43(9):2929-2942(in Chinese with English abstract).
      Guo, J., Zhang, R.Q., Sun, W.D., et al., 2018.Genesis of Tin-Dominant Polymetallic Deposits in the Dachang District, South China: Insights from Cassiterite U-Pb Ages and Trace Element Compositions.Ore Geology Reviews, 95: 863-879.https://doi.org/10.1016/j.oregeorev.2018.03.023
      Han, F., Zhao, R.S., Shen, J.Z., et al., 1997.Geology and Origin of Ores in the Dachang Polymetallic Tin Ore Field.Geological Publishing House, Beijing (in Chinese).
      Heinrich, C.A., 1990.The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition.Economic Geology, 85(3): 457-481.https://doi.org/10.2113/gsecongeo.85.3.457
      Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005.The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90(2-3): 316-328.https://doi.org/10.2138/am.2005.1498
      Kumar, S., Pathak, M., 2010.Mineralogy and Geochemistry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya: Evidence of Bimodal Granitogeny and Tectonic Affinity.Journal of the Geological Society of India, 75(5): 715-730.https://doi.org/10.1007/s12594-010-0058-0
      Li, X., Qing, D.X., Cai, W., et al., 2009.The Geological Characteristics and Ore-Controlling Role of the East Dyke in Dachang Deposit in Guangxi.Mineral Resources and Geology, 23(5):406-411(in Chinese with English abstract).
      Liang, T., Wang, D.H., Hou, K.J., et al., 2011.LA-MC-ICP-MS Zircon U-Pb Dating of Longxianggai Pluton in Dachang of Guangxi and Its Geological Significance.Acta Petrologica Sinica, 27(6):1624-1636(in Chinese with English abstract).
      Liao, Q.K., Peng, M.Y., 1992.Study on the Method for Granite Unit-Super Unit Mapping in the Darong-Shiwan Mountians Area, Guangxi.Guangxi Normal University Press, Guilin(in Chinese).
      Lin, W.W., Peng, L.J., 1994.The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data.Journal of Changchun University of Earth Sciences, 24(2):155-162(in Chinese with English abstract).
      Linnen, R.L., Pichavant, M., Holtz, F., 1996.The Combined Effects of fO2 and Melt Composition on SnO2 Solubility and Tin Diffusivity in Haplogranitic Melts.Geochimica et Cosmochimica Acta, 60(24): 4965-4976.https://doi.org/10.1016/s0016-7037(96)00295-5
      Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984.Guidelines of Elemental Geochemistry.Geological Publishing House, Beijing(in Chinese).
      Ma, C.Q., Yang, K.G., Tang, Z.H., et al., 1994.Magma-Dynamics Granitoids:Theory, Methods and a Case Study of the Eastern Hubei Granitoids.China University of Geosciences Press, Wuhan(in Chinese).
      Moshefi, P., Hosseinzadeh, M.R., Moayyed, M., et al., 2018.Comparative Study of Mineral Chemistry of Four Biotite Types as Geochemical Indicators of Mineralized and Barren Intrusions in the Sungun Porphyry Cu-Mo Deposit, Northwestern Iran.Ore Geology Reviews, 97: 1-20.https://doi.org/10.1016/j.oregeorev.2018.05.003
      Munoz, J., 1992.Calculation of HF and HCl Fugacities from Biotite Compositions:Revised Equations.Geological Society of America, Abstracts with Programs, 24:A221.
      Nachit, H., Ibhi, A., Abia, E.H., et al., 2005.Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites.Comptes Rendus Geoscience, 337(16): 1415-1420.https://doi.org/10.1016/j.crte.2005.09.002
      Qin, D.X., Tuo, H., Long, T.Y., et al., 2002.Deposits Geology and Economic Technology of 92# Orebody on Dachang, Guangxi Tin Deposit.Geological Publishing House, Beijing (in Chinese).
      Selby, D., Nesbitt, B.E., 2000.Chemical Composition of Biotite from the Casino Porphyry Cu-Au-Mo Mineralization, Yukon, Canada: Evaluation of Magmatic and Hydrothermal Fluid Chemistry.Chemical Geology, 171(1/2): 77-93.https://doi.org/10.1016/s0009-2541(00)00248-5
      Shao, Z.Z., Peng, Z.A., Cai, M.H., et al., 2018.Research Progress of the Genesis of Dachang Tin Deposit, Guangxi.Mineral Exploration, 9(6):1172-1178(in Chinese with English abstract).
      Stone, D., 2000.Temperature and Pressure Variations in Suites of Archean Felsic Plutonic Rocks, Berens River Area, Northwest Superior Province, Ontario, Canada.The Canadian Mineralogist, 38(2): 455-470.https://doi.org/10.2113/gscanmin.38.2.455
      Tang, P., Tang, J.X., Zheng, W.B., et al., 2017.Mineral Chemistry of Hydrothermal Biotites from the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science Frontiers, 24(5):265-282(in Chinese with English abstract).
      Tischendorf, G., Förster, H.J., Gottesmann, B., 1999.The Correlation between Lithium and Magnesium in Trioctahedral Micas: Improved Equations for Li2O Estimation from MgO Data.Mineralogical Magazine, 63(1): 57-74.https://doi.org/10.1180/minmag.1999.063.1.07
      Uchida, E., Endo, S., Makino, M., 2007.Relationship between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits.Resource Geology, 57(1): 47-56.https://doi.org/10.1111/j.1751-3928.2006.00004.x
      Wang, R.C., Xie, L., Chen, J., et al., 2013.Tin-Carrier Minerals in Metaluminous Granites of the Western Nanling Range (Southern China): Constraints on Processes of Tin Mineralization in Oxidized Granites.Journal of Asian Earth Sciences, 74: 361-372.
      Wang, D.H., Chen, Y.C., Chen, W., et al., 2004.Dating the Dachang Giant Tin-Polymetal Lic Deposit in Nandan, Guangxi.Acta Geologica Sinica, 78(1):132-138,146(in Chinese with English abstract).
      Wones, D.R., Eugster, H.P., 1965.Stability of Biotite:Experiment, Theory, and Application.American Mineralogist, 50:1228-1272.
      Wones, D.R., 1989.Significance of the Assemblage Titanite+Magnetite+Quartz in Granitic Rocks.American Mineralogist, 74(7-8):744-749.
      Xie, Y.W., Zhang, Y.Q., 1995.Compositional Characteristics and Petrological Significance of Mg-Fe Micas in Alkalic Rocks of the Ailaoshan-Jinshajiang Rift System.Acta Mineralogica Sinica, 15(1):82-87(in Chinese with English abstract).
      Zhang, W., Lentz, D.R., Thorne, K.G., et al., 2016.Geochemical Characteristics of Biotite from Felsic Intrusive Rocks around the Sisson Brook W-Mo-Cu Deposit, West-Central New Brunswick: An Indicator of Halogen and Oxygen Fugacity of Magmatic Systems.Ore Geology Reviews, 77: 82-96.https://doi.org/10.1016/j.oregeorev.2016.02.004
      Zhao, H., Su, W.C., Xie, P., et al., 2018.Re-Os Dating of Molybdenite and In-Situ Pb Isotopes of Sulfides from the Lamo Zn-Cu Deposit in the Dachang Tin-Polymetallic Ore Field, Guangxi, China.Acta Geochimica, 37(3): 384-394.https://doi.org/10.1007/s11631-018-0266-7
      Zhao, H., Su, W.C., Shen, N.P., et al., 2018.Fluid Inclusion Study of the Gaofeng Tin-Polymetallic Deposit in the Dachang Ore Field, Guangxi, China.Acta Petrologica Sinica, 34(12):3553-3566(in Chinese with English abstract).
      Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017.Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit:Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province.Earth Science, 42(10):1647-1657(in Chinese with English abstract).
      Zhou, Z.X., 1988.Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning.Acta Petrologica Sinica, 4(3):63-73(in Chinese with English abstract).
      Zhu, C., Sverjensky, D.A., 1992.F-Cl-OH Partitioning between Biotite and Apatite.Geochimica et Cosmochimica Acta, 56(9): 3435-3467.https://doi.org/10.1016/0016-7037(92)90390-5
      蔡明海, 何龙清, 刘国庆, 等, 2006.广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义.地质论评, 52(3):409-414.
      陈毓川, 黄民智, 徐珏, 等, 1985.大厂锡石-硫化物多金属矿带地质特征及成矿系列.地质学报, 59(3):228-240.
      丁孝石, 1988.西藏中南部花岗岩类中云母矿物标型特征及其地质意义.中国地质科学院矿床地质研究所文集, 21(1):33-50.
      范森葵, 黎修旦, 成永生, 等, 2010.广西大厂矿区脉岩的地球化学特征及其构造和成矿意义.地质与勘探, 46(5):828-835.
      傅金宝, 许文渊, 周卫宁, 等, 1983.大厂锡矿田龙箱盖岩体黑云母的特征及其地质意义.矿产与地质, (3):89-103.
      龚林, 陈华勇, 王云峰, 等, 2018.新疆玉海-三岔口铜矿黑云母矿物化学特征及成岩成矿意义.地球科学, 43(9):2929-2942.
      韩发, 赵汝松, 沈建忠, 1997.大厂锡多金属矿床地质及成因.北京:地质出版社.
      李晓, 秦德先, 蔡稳, 等, 2009.广西大厂锡矿"东岩墙"地质特征与控矿作用.矿产与地质, 23(5):406-411.
      梁婷, 王登红, 侯可军, 等, 2011.广西大厂笼箱盖复式岩体的LA-MC-ICP-MS锆石U-Pb年龄及其地质意义.岩石学报, 27(6):1624-1636.
      廖庆康, 彭懋媛, 1992.花岗岩区填图方法:大容山——十万大山岩石谱系单位填图研究.桂林:广西师范大学出版社.
      林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报, 24(2):155-162.
      刘英俊, 曹厉明, 李兆麟, 等, 1984.元素地球化学.北京:地质出版社.
      马昌前, 杨坤光, 唐仲华, 等, 1994.花岗岩类与岩浆动力学——理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社.
      秦德先, 洪托, 田毓龙, 等, 2002.广西大厂锡矿92号矿体矿床地质与技术经济.北京:地质出版社.
      邵主助, 彭振安, 蔡明海, 等, 2018.广西大厂锡矿成因研究进展.矿产勘查, 9(6):1172-1178.
      唐攀, 唐菊兴, 郑文宝, 等, 2017.西藏拉抗俄斑岩铜钼矿床黑云母矿物化学特征.地学前缘, 24(5):265-282.
      王登红, 陈毓川, 陈文, 等, 2004.广西南丹大厂超大型锡多金属矿床的成矿时代.地质学报, 78(1):132-138,146.
      谢应雯, 张玉泉, 1995.哀牢山-金沙江裂谷系岩石中镁铁云母成分特征及其岩石学意义.矿物学报, 15(1):82-87.
      赵海, 苏文超, 沈能平, 等, 2018.广西大厂矿田高峰锡多金属矿床流体包裹体研究.岩石学报, 34(12):3553-3566.
      周云, 梁新权, 蔡永丰, 等, 2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义.地球科学, 42(10):1647-1657.
      周作侠, 1988.侵入岩的镁铁云母化学成分特征及其地质意义.岩石学报, 4(3):63-73.
    • dqkx-45-4-1213-Table1.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (3394) PDF downloads(118) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return