• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 11
    Nov.  2019
    Turn off MathJax
    Article Contents
    Liu Li, He Sheng, Zhai Gangyi, Chen Ke, Liu Zaoxue, Wang Yi, Han Yuanjia, Dong Tian, 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
    Citation: Liu Li, He Sheng, Zhai Gangyi, Chen Ke, Liu Zaoxue, Wang Yi, Han Yuanjia, Dong Tian, 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142

    Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation

    doi: 10.3799/dqkx.2019.142
    • Received Date: 2019-06-17
    • Publish Date: 2019-11-15
    • Core observation shows that high-angle and bed-parallel fractures of tectonic compression origin develop in the black shale of the second member of the Lower Cambrian Niutitang Formation in the southern limb of Huangling anticline,West Hubei. Typical fracture veins with different occurrences were selected,calcite vein was filled in high-angle fractures and calcite-dolomite composite vein was filled in bedding fractures under thin section microscopy. Through cathodic luminescence,fluid inclusion analysis and in-situ element determination,the evolutions of diagenetic environment of fractured veins were studied,and the effects of different occurrence fractures on local sealing of shale gas reservoirs were analyzed. The cathodic luminescence observation indicates that the high-angle calcite vein and bed-parallel calcite-dolomite composite vein were both formed by two phases of fluid activity. According to fluid inclusion analysis,the early vein-forming fluids of high-angle calcite vein were mainly deep-metamorphic stratum brine while the late vein-forming fluids were mixed with low-salinity fluids,however the two-stage vein-forming fluids of bed-parallel calcite-dolomite composite vein were not modified by low salinity fluids. The in-situ element determination results of carbonate minerals with different cathodoluminescence characteristics in fracture veins,and analyses of iron and manganese content,rare earth elements(REE) and redox discriminant parameters,show that the diagenetic environment of high-angle calcite vein has undergone a transformation from reductive environment to oxidative environment,while the diagenetic environment of bed-parallel calcite-dolomite composite vein has maintained a relatively reductive environment for a long time. Therefore,it is considered that high-angle fractures may have destructive effect on the local sealing conditions of shale gas reservoirs,resulting in the loss of shale gas to a certain extent. While bed-parallel fractures may have relatively limited destructive effect on the local sealing conditions. The study of fracture development characteristics and diagenetic evolution process can provide basis for the evaluation of self-sealing conditions of shale gas reservoirs and micro-preservation conditions of shale gas.

       

    • loading
    • Gao, J., He, S., He, Z.L., et al., 2014. Genesis of Calcite Vein and Its Implication to Petroleum Preservation in Jingshan Region, Mid-Yangtze. Oil & Gas Geology, 35(1):33-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201401005
      Gao, J., He, S., Yi, J.Z., 2015. Discovery of High Density Methane Inclusions in Jiaoshiba Shale Gas Field and Its Significance. Oil & Gas Geology, 36(3):472-480 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201503016
      Gao, J., He, S., Zhao, J.X., et al., 2017. Geothermometry and Geobarometry of Overpressured Lower Paleozoic Gas Shales in the Jiaoshiba Field, Central China:Insight from Fluid Inclusions in Fracture Cements. Marine and Petroleum Geology, 83:124-139. https://doi.org/10.1016/j.marpetgeo.2017.02.018
      Hall, D. L., Sterner, S. M., Bodnar, R. J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1):197-202. https://doi.org/10.2113/gsecongeo.83.1.197
      Hao, L.B., Qi, C. M., 2004. Geochemical Principle. Geological Publishing House, Beijing (in Chinese).
      Henderson, P., 1989. REE Geochemistry. Geological Publishing House, Beijing (in Chinese).
      Hu, D.F., Zhang, H.R., Ni, K., et al., 2014.Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin. Natural Gas Industry, 34(6):17-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201406003
      Hu, X. M., Wang, C.S., 2001. Summarization on the Studying Methods of the Paleo-Ocean Dissolved Oxygen. Advance in Earth Sciences, 16(1):65-71 (in Chinese with English abstract).
      Hu, Z.C., Zhang, W., Liu, Y.S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. doi: 10.1021/ac503749k
      Huang, S.J., 1992. Relationship between Cathodoluminescence and Concentration of Iron and Manganese in Carbonate Minerals. Mineralogy and Petrology, 12(4):74-79 (in Chinese with English abstract).
      Jiang, L., Deng, B., Liu, S.G., et al., 2019. Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area. Earth Science, 44(2):524-538 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.515
      Lee, S. G., Lee, D. H., Kim, Y., et al., 2003. Rare Earth Elements as Indicators of Groundwater Environment Changes in a Fractured Rock System:Evidence from Fracture-Filling Calcite. Applied Geochemistry, 18(1):135-143. https://doi.org/10.1016/s0883-2927(02)00071-9
      Li, W., He, S., Zhang, B.Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4):402-415 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201804004
      Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6):1020-1031. https://doi.org/10.1007/s12583-016-0932-x
      Lin, Z.J., Chen, D.F., Liu, Q., 2008. Geochemical Indices for Redox Conditions of Marine Sediments. Bulletin of Mineralogy, Petrology and Geochemistry, 27(1):72-80 (in Chinese with English abstract).
      Liu, B., Shen, K., 1999. The Thermodynamic Simulation of Fluid Inclusions. Geological Publishing House, Beijing (in Chinese).
      Liu, D.H., Lu, H.Z., Xiao, X.M., 2007. Hydrocarbon Inclusions and Its Application in Petroleum Exploration and Development. Guangdong Science and Technology Press, Guangzhou (in Chinese).
      Liu, Y., 2017. Geochemical Genesis Model and Its Applications of Natural Gas in High-over Matured Shale (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Beijing (in Chinese).
      Moore, C.H., 1989. Carbonate Diagenesis and Porosity. Elsevier, New York.
      Nothdurft, L.D., Webb, G.E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia:Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2):263-283. https://doi.org/10.1016/s0016-7037(03)00422-8
      Shen, C.B., Mei, L.F., Liu, Z.Q., et al., 2009. Apatite and Zircon Fission Track Date, Evidences for the Mesozoic-Cenozoic Uplift of Huangling Dome, Central China. Journal of Mineralogy and Petrology, 29(2):54-60 (in Chinese with English abstract).
      Wang, J., Chu, Y., Lin, W., et al., 2010. Structural Geometry and the Origin of the Huangling Anticline. Chinese Journal of Geology, 45(3):615-625 (in Chinese with English abstract).
      Wang, W., 2009. Study on the Fluids Characteristics of the Marine Strata in the Middle Yangtze Region and Its Connection with Hydrocarbon Preservation (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Wang, X., Gao, J., He, S., et al., 2017. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China:Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 28(2):315-332. https://doi.org/10.1007/s12583-016-0921-7
      Wei, D.X., Shen, A.J., Wang, Y., et al., 2015. Cathodoluminescence Features of the Calcite Filling in the Ordovician Carbonate Fractured-Vuggy Reservoir and Its Significance to Instructions of Diagenetic Environment in Northern Tarim Basin. Petroleum Geology and Recovery Efficiency, 22(4):54-58 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201504010
      Xu, D.L., Peng, L.H., Liu, H., et al., 2013. Meso-Cenozoic Tectono-Sedimentary Response of Multi-Phased Uplifts of Huangling Anticline, Central China. Geology and Mineral Resources of South China, 29(2):90-99 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc201302002
      Yang, X., 2017. Preservative Conditions of Shale Gas from Wufeng Formation to Longmaxi Formation in Northeast of Chongqing (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Yang, X.Y., He, S., He, Z.L., et al., 2013. Characteristics and Paleo-Fluid Activity Implications of Fluid-Inclusion and Isotope of Calcite Veins in Jingshan Area. Journal of China University of Petroleum (Edition of Natural Science), 37(1):19-26 (in Chinese with English abstract).
      Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085
      Zhang, H.F., Gao, S., 2012. Geochemistry. Geological Publishing House, Beijing (in Chinese).
      Zhang, J.K., He, S., Yi, J.Z., et al., 2014. Rock Thermo-Acoustic Emission and Basin Modeling Technologies Applied to the Study of Maximum Paleotemperatures and Thermal Maturity Histories of Lower Paleozoic Marine Shales in the Western Middle Yangtze Area. Acta Petrolei Sinica, 35(1):58-67 (in Chinese with English abstract). doi: 10.1038/aps.2013.122
      Zhang, J.L., Qiao, S. H., Lu, W.J., et al., 2015. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171:20-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3eb9deb275033217debf9a20a4bf1200
      高键, 何生, 何治亮, 等, 2014.中扬子京山地区方解石脉成因及其对油气保存的指示意义.石油与天然气地质, 35(1):33-41. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201401005
      高键, 何生, 易积正, 2015.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义.石油与天然气地质, 36(3):472-480. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201503016
      郝立波, 戚长谋, 2004.地球化学原理.北京:地质出版社.
      Henderson, P., 1989.稀土元素地球化学.北京:地质出版社.
      胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及其主控因素.天然气工业, 34(6):17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003
      胡修棉, 王成善, 2001.古海洋溶解氧研究方法综述.地球科学进展, 16(1):65-71. doi: 10.3321/j.issn:1001-8166.2001.01.013
      黄思静, 1992.碳酸盐矿物的阴极发光性与其Fe, Mn含量的关系.矿物岩石, 12(4):74-79.
      姜磊, 邓宾, 刘树根, 等, 2019.焦石坝-武隆构造带古流体活动差异及对页岩气保存条件的影响.地球科学, 44(2):524-538. doi: 10.3799/dqkx.2018.515
      李文, 何生, 张柏桥, 等, 2018.焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征.石油学报, 39(4):402-415. http://d.old.wanfangdata.com.cn/Periodical/syxb201804004
      林治家, 陈多福, 刘芊, 2008.海相沉积氧化还原环境的地球化学识别指标.矿物岩石地球化学通报, 27(1):72-80. doi: 10.3969/j.issn.1007-2802.2008.01.012
      刘斌, 沈昆, 1999.流体包裹体热力学.北京:地质出版社.
      刘德汉, 卢焕章, 肖贤明, 2007.油气包裹体及其在石油勘探和开发中的应用.广州:广东科技出版社.
      刘飏, 2017.高-过成熟页岩中天然气地球化学成因模式与应用(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017136496.htm
      卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社.
      沈传波, 梅廉夫, 刘昭茜, 等, 2009.黄陵隆起中-新生代隆升作用的裂变径迹证据.矿物岩石, 29(2):54-60. doi: 10.3969/j.issn.1001-6872.2009.02.009
      王军, 褚杨, 林伟, 等, 2010.黄陵背斜的构造几何形态及其成因探讨.地质科学, 45(3):615-625. doi: 10.3969/j.issn.0563-5020.2010.03.001
      王威, 2009.中扬子区海相地层流体特征及其与油气保存关系研究(博士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/article/cdmd-10616-2009220915.htm
      韦东晓, 沈安江, 王莹, 等, 2015.塔北地区奥陶系碳酸盐岩缝洞充填方解石的阴极发光特征及对成岩环境的指示意义.油气地质与采收率, 22(4):54-58. doi: 10.3969/j.issn.1009-9603.2015.04.010
      徐大良, 彭练红, 刘浩, 等, 2013.黄陵背斜中新生代多期次隆升的构造-沉积响应.华南地质与矿产, 29(2):90-99. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201302002
      杨潇, 2017.渝东北地区五峰组-龙马溪组页岩气保存条件分析(硕士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1017218951.htm
      杨兴业, 何生, 何治亮, 等, 2013.京山地区方解石脉包裹体、同位素特征及古流体指示意义.中国石油大学学报(自然科学版), 37(1):19-26. doi: 10.3969/j.issn.1673-5005.2013.01.004
      翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068. doi: 10.3799/dqkx.2017.085
      张宏飞, 高山, 2012.地球化学.北京:地质出版社.
      张建坤, 何生, 易积正, 等, 2014.岩石热声发射和盆模技术研究中扬子区西部下古生界海相页岩最高古地温和热成熟史.石油学报, 35(1):58-67. http://d.old.wanfangdata.com.cn/Periodical/syxb201401006
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (5616) PDF downloads(153) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return