• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 11
    Nov.  2019
    Turn off MathJax
    Article Contents
    Wang Baozhong, Wang Chuanshang, Wang Xiaofeng, Peng Zhongqin, Wei Kai, 2019. Characteristics of Aromatic Compounds in High-over Matured Marine Shale and Its Significance to Shale Gas. Earth Science, 44(11): 3705-3716. doi: 10.3799/dqkx.2019.143
    Citation: Wang Baozhong, Wang Chuanshang, Wang Xiaofeng, Peng Zhongqin, Wei Kai, 2019. Characteristics of Aromatic Compounds in High-over Matured Marine Shale and Its Significance to Shale Gas. Earth Science, 44(11): 3705-3716. doi: 10.3799/dqkx.2019.143

    Characteristics of Aromatic Compounds in High-over Matured Marine Shale and Its Significance to Shale Gas

    doi: 10.3799/dqkx.2019.143
    • Received Date: 2019-06-16
    • Publish Date: 2019-11-15
    • In order to evaluate the thermal evolution degree of organic matter of Lower Paleozoic shale in South China and discuss its relationship with shale gas, gas chromatography-mass spectrometry analysis of aromatic compounds in 20 shale samples collected from 6 investigation wells and 3 outcrop profiles in the Central Yangtze region was made, and 6 samples representing different regions were determined by laser Raman spectroscopy. The results show that the parameters of Raman D and G bands can be used to calculate the maturity of organic matter from over-maturity to spheroidal graphite stage. The sub-bands of D band contain important information of aromatics content. The strength of D4 sub-band, which is related to aromatics content, decreases with the increase of thermal evolution degree of organic matter. The evolution regularities of phenanthrene series compounds and dibenzothiophene series compounds are remarkable in the range of RmcRo=2.73%-4.67%. Although the formula for maturity of methylphenanthrene is no longer applicable in this stage, the parameter F1 which characterizes the relative content of 3-MP+2-MP is still a good maturity index of organic matter. F1 gradually increases to about 0.74(Ro=3%) firstly, and then decreases with the increase of maturity at the over-maturity stage. The parameters of dibenzothiophene compounds, 2, 4-/1, 4-DMDBT and 4, 6-/1, 4-DMDBT, increase with maturity at the over-maturity stage. When the two ratios are 2 and 4.5 respectively, the Raman reflectance value of shale is RmcRo=4%. The isomerization and demethylation of aromatic hydrocarbon series compounds occur with the increase of thermal evolution degree of organic matter in the over-mature stage, which has a good coupling effect with the change of specific surface area of organic matter and a good correlation with analytical gas about investigation wells. The characteristics of aromatic hydrocarbon compounds have important indicative significance for shale gas generation at the over-mature stage, and can be used as an effective index for shale gas exploration in over-mature areas of Lower Paleozoic in South China.

       

    • loading
    • Bao, F., Li, Z. M., Zhang, M. Z., et al., 2012. Application of Laser Raman Spectrum in Organic Maceral Studies. Petroleum Geology & Experiment, 34(1):104-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201201020
      Bao, J.P., Wang, T. G., Zhou, Y.Q., et al., 1992.The Relationship between Methyl Phenanthrene Ratios and the Evolution of Organic Matter. Journal of Jianghan Petroleum Institute, 14 (4):8-13 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-jhsx199204001.htm
      Boreham, C. J., Crick, I. H., Powell, T. G., 1988. Alternative Calibration of the Methylphenanthrene Index against Vitrinite Reflectance: Application to Maturity Measurements on Oils and Sediments. Organic Geochemistry, 12(3):289-294. https://doi.org/10.1016/0146-6380(88)90266-5
      Bouloubassi, I., Saliot, A., 1993. Dissolved, Particulate and Sedimentary Naturally Derived Polycyclic Aromatic Hydrocarbons in a Coastal Environment: Geochemical Significance. Marine Chemistry, 42(2):127-143. https://doi.org/10.1016/0304-4203(93)90242-g
      Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments. Organic Geochemistry, 26(7-8):483-489. https://doi.org/10.1016/s0146-6380(97)00022-3
      Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6):1099-1119. https://doi.org/10.1306/10171111052
      Chanyshev, A. D., Litasov, K. D., Shatskiy, A. F., et al., 2015. Oligomerization and Carbonization of Polycyclic Aromatic Hydrocarbons at High Pressure and Temperature. Carbon, 84:225-235. https://doi.org/10.1016/j.carbon.2014.12.011
      Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058
      Feng, G. X., Chen, S. J., 1988. Relationship between the Reflectance of Bitumen and Vitrinite in Rock. Natural Gas Industry, 8(3):20-25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e619919b0598273b06a12c821d9bd0b1
      Ferrari, A.C., Meyer, J. C., Scardaci, V., et al., 2006. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18):187401. https://doi.org/10.1103/PhysRevLett.97.187401
      Henry, D. G., Jarvis, I., Gillmore, G., et al., 2018. Assessing Low-Maturity Organic Matter in Shales Using Raman Spectroscopy: Effects of Sample Preparation and Operating Procedure. International Journal of Coal Geology, 191:135-151. https://doi.org/10.1016/j.coal.2018.03.005
      Jawhari, T., Roid, A., Casado, J., 1995. Raman Spectroscopic Characterization of Some Commercially Available Carbon Black Materials. Carbon, 33(11):1561-1565. https://doi.org/10.1016/0008-6223(95)00117-v
      Keown, D. M., Li, X. J., Hayashi, J. I., et al., 2008. Evolution of Biomass Char Structure during Oxidation in O2 as Revealed with FT-Raman Spectroscopy. Fuel Processing Technology, 89(12):1429-1435. https://doi.org/10.1016/0008-6223(95)00117-v
      Kruge, M.A., 2000. Determination of Thermal Maturity and Organic Matter Type by Principal Components Analysis of the Distributions of Polycyclic Aromatic Compounds. International Journal of Coal Geology, 43(1-4):27-51. https://doi.org/10.1016/s0166-5162(99)00053-1
      Kudryavtsev, A. B., Schopf, J. W., Agresti, D. G., et al., 2001. In Situ Laser-Raman Imagery of Precambrian Microscopic Fossils. Proceedings of the National Academy of Sciences, 98(3):823-826. https://doi.org/10.1073/pnas.98.3.823
      Liu, D. H., Xiao, X. M., Tian, H., et al., 2012. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chinese Science Bulletin, 58(11):1285-1298. https://doi.org/10.1007/s11434-012-5535-y
      Liu, Q. F., Yuan, L., Li, K., et al., 2018. Structure Characteristics of Different Metamorphic Grade Coal-Based Graphites. Earth Science, 43(5):305-311 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.419
      Luo, J., Cheng, K.M., Fu, L.X., et al., 2001. Alkylated Dibenzothiophene Index—A New Method to Assess Thermal Maturity of Source Rocks. Acta Petrolei Sinica, 22(3):27-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB200103008.htm
      Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194
      Milner, C. W. D., Rogers, M. A., Evans, C. R., 1977. Petroleum Transformations in Reservoirs. Journal of Geochemical Exploration, 7:101-153. https://doi.org/10.1016/0375-6742(77)90079-6
      Mohtar, L. G., Rodríguez, S.A., Nazareno, M. A., 2018. Comparative Analysis of Volatile Compound Profiles of Propolis from Different Provenances. Journal of the Science of Food and Agriculture, 98(9):3409-3415. https://doi.org/10.1002/jsfa.8852
      Quirico, E., Rouzaud, J. N., Bonal, L., et al., 2005. Maturation Grade of Coals as Revealed by Raman Spectroscopy: Progress and Problems. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 61(10):2368-2377. https://doi.org/10.1016/j.saa.2005.02.015
      Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3):224-236. https://doi.org/10.1016/0264-8172(88)90003-7
      Radke, M., Welte, D. H., Willsch, H., 1982. Geochemical Study on a Well in the Western Canada Basin: Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter. Geochimica et Cosmochimica Acta, 46(1):1-10. https://doi.org/10.1016/0016-7037(82)90285-x
      Roger, M., Li, Y.J., Cao, K.N., et al., 2017. Ediacaran Macrofossils in Shunyang Valley, Sixi, Three Gorges District, Hubei Province, China. Journal of Earth Science, 8(4): 614-621. https://doi.org/10.1007/s12583-017-0773-1
      Romero-Sarmiento, M. F., Rouzaud, J. N., Bernard, S., et al., 2014. Evolution of Barnett Shale Organic Carbon Structure and Nanostructure with Increasing Maturation. Organic Geochemistry, 71:7-16. https://doi.org/10.1016/j.orggeochem.2014.03.008
      Sadezky, A., Muckenhuber, H., Grothe, H., et al., 2005. Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information. Carbon, 43(8):1731-1742. https://doi.org/10.1016/j.carbon.2005.02.018
      Santamarı́a-Orozco, D., Horsfield, B., Di, P.R., et al., 1998. Influence of Maturity on Distributions of Benzo- and Dibenzothiophenes in Tithonian Source Rocks and Crude Oils, Sonda de Campeche, Mexico. Organic Geochemistry, 28(7-8): 423-439. https://doi.org/10.1016/s0146-6380(98)00009-6
      Sauerer, B., Craddock, P. R., Al Johani, M. D., et al., 2017. Fast and Accurate Shale Maturity Determination by Raman Spectroscopy Measurement with Minimal Sample Preparation. International Journal of Coal Geology, 173:150-157. https://doi.org/10.1016/j.coal.2017.02.008
      Wakeham, S.G., Schaffner, C., Giger, W., 1980. Poly Cyclic Aromatic Hydrocarbons in Recent Lake Sediments-Ⅱ. Compounds Derived from Biogenic Precursors during Early Diagenesis. Geochimica et Cosmochimica Acta, 44(3):415-429. https://doi.org/10.1016/0016-7037(80)90041-1
      Wang, B. Z, Ou, W. J., Wang, C. S., et al., 2018. Geochemical Characteristics of the Earth Carboniferous Shale in Guizhong Depression and Their Contribution to Adjacent Gas Reservoirs. Earth Science, 43(7): 2222-2233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.226
      Wang, T.G., He, F.Q., Li, M.J., et al., 2005. Alkyl Dibenzothiophene Class: Molecular Markers for Tracer Reservoir Filling Pathways. Chinese Science Bulletin, 50(2): 176-182 (in Chinese). doi: 10.1360/csb2005-50-2-176
      Wang, X. F., Hoffknecht, A., Xiao, J. X., et al., 2009. Graptolite, Chitinozoan and Scolecodont Reflectances and Their Use as Indicators of Thermal Maturity. Acta Geologica Sinica (English Edition), 6(1):93-105. https://doi.org/10.1111/j.1755-6724.1993.mp6001007.x
      Wang, Y. M., Li, X. J., Chen, B., et al., 2018. Lower Limit of Thermal Maturity for the Carbonization of Organic Matter in Marine Shale and Its Exploration Risk. Petroleum Exploration and Development, 45(3):385-395 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201803003
      Wilkins, R. W. T., Sherwood, N., Li, Z. S., 2018.RaMM (Raman Maturity Method) Study of Samples Used in an Interlaboratory Exercise on a Standard Test Method for Determination of Vitrinite Reflectance on Dispersed Organic Matter in Rocks. Marine and Petroleum Geology, 91: 236-250. https://doi.org/10.1016/j.marpetgeo.2017.12.030
      Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5): 758-778. https://doi.org/10.1007/s12583-017-0733-9
      Xiao, X.M., Liu, D. H., Fu, J. M., 1991. The Significance of Bitumen Reflectance as a Mature Parameter of Source Rocks. Acta Sedimentologica Sinica, 9(Suppl.):138-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB1991S1018.htm
      Yang, P., Xie, Y., Li, X. B., et al., 2012. Hydrocarbon- Generating Potential of the Source Rocks of the Sinian Doushantuo Formation on the Western Side of the Xuefeng Mountain. Geology in China, 39(5):1299-1310 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201205017
      Zhang, T., Wang, Z. D., Qian, Y., et al., 2018. Evolutional Characteristics of the Phenanthrene and Anthracene Series in the Liquid Products from the Temperature- Pressure Experiments. Petroleum Geology and Oilfield Development in Daqing, 37(2): 48-55 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf201802007
      Zhao, W. Z., Li, J. Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4):499-510 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201604001
      鲍芳, 李志明, 张美珍, 等, 2012.激光拉曼光谱在有机显微组分研究中的应用.石油实验地质, 34(1):104-108. doi: 10.3969/j.issn.1001-6112.2012.01.020
      包建平, 王铁冠, 周玉琦, 等, 1992.甲基菲比值与有机质热演化的关系.江汉石油学院学报, 14 (4) :8-13. http://www.cnki.com.cn/Article/CJFD1992-JHSX199204001.htm
      丰国秀, 陈盛吉, 1988.岩石中沥青反射率与镜质体反射率之间的关系.天然气工业, 8(3):20-25. http://d.old.wanfangdata.com.cn/Conference/55271
      刘钦甫, 袁亮, 李阔, 等, 2018.不同变质程度煤系石墨结构特征.地球科学, 43(5):305-311. doi: 10.3799/dqkx.2018.419
      罗健, 程克明, 付立新, 等, 2001.烷基二苯并噻吩-烃源岩热演化新指标.石油学报, 22(3):27-31. http://www.cnki.com.cn/Article/CJFDTotal-SYXB200103008.htm
      王保忠, 欧文佳, 王传尚, 等, 2018.桂中坳陷早石炭世泥页岩地球化学特征及近源气成藏模式.地球科学, 43(7): 2222-2233. doi: 10.3799/dqkx.2018.226
      王铁冠, 何发岐, 李美俊, 等, 2005.烷基二苯并噻吩类:示踪油藏充注途径的分子标志物.科学通报, 50(2):176-182. doi: 10.3321/j.issn:0023-074X.2005.02.013
      王玉满, 李新景, 陈波, 等, 2018.海相页岩有机质炭化的热成熟度下限及勘探风险.石油勘探与开发, 45(3): 385-395. http://d.old.wanfangdata.com.cn/Periodical/syktykf201803003
      肖贤明, 刘德汉, 傅家谟, 1991.沥青反射率作为烃源岩成熟度指标的意义.沉积学报, 9(S1):138-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000030119
      杨平, 谢渊, 李旭兵, 等, 2012.雪峰山西侧震旦系陡山沱组烃源岩生烃潜力及油气地质意义.中国地质, 39(5):1299-1310. doi: 10.3969/j.issn.1000-3657.2012.05.017
      张婷, 王作栋, 钱宇, 等, 2018.温压实验液态产物中菲和蒽系列的演化特征.大庆石油地质与开发, 37(2): 48-55. http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf201802007
      赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4):499-510. doi: 10.11698/PED.2016.04.01
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (3284) PDF downloads(83) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return