• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Dong Yuchao, Xie Chaoming, Fan Jianjun, Yu Yunpeng, Hao Yujie, 2019. Discussion on Protolith Properties of Eclogites in Sumdo Area, Tibet and Their Significance. Earth Science, 44(7): 2234-2248. doi: 10.3799/dqkx.2019.148
    Citation: Dong Yuchao, Xie Chaoming, Fan Jianjun, Yu Yunpeng, Hao Yujie, 2019. Discussion on Protolith Properties of Eclogites in Sumdo Area, Tibet and Their Significance. Earth Science, 44(7): 2234-2248. doi: 10.3799/dqkx.2019.148

    Discussion on Protolith Properties of Eclogites in Sumdo Area, Tibet and Their Significance

    doi: 10.3799/dqkx.2019.148
    • Received Date: 2019-04-29
    • Publish Date: 2019-07-15
    • The Sumdo eclogite is an important material for constraining the evolution of the Paleo-Tethys in the central part of the Lhasa plate. Detailed studies have been carried out on its geochronological data and metamorphic P-T conditions. The study of eclogite protoliths is relatively weak. The geochemical analysis of eclogites is an important means to restore the composition of the original rocks, and it is also an important evidence for retrieving the evolution process of the Paleo-Tethys in the Sumdo area. Based on the systematic collection and classification of the previous geochemical data of Sumdo eclogite, 17 geochemical samples were collected from Sumdo eclogite for systematic analysis, which is intended to provide new constraints on regional tectonic evolution. Two types of eclogites were exposed in the Sumdo area, which are bimineralic eclogite and retrograded eclogite. Both types of eclogites are characterized by sub-alkaline basalts. In the trace elements and various tectonic environment discrimination diagrams, two kinds of eclogites are all in the N-MORB and E-MORB areas. Based on the above analysis results, combined with regional geological data, the interaction of the mantle plum mass and the normal mid-ocean ridge during the process of Paleo-Tethys Ocean has existed for a long time.

       

    • loading
    • Becker, H., Jochum, K. P., Carlson, R. W., 1999. Constraints from High-Pressure Veins in Eclogites on the Composition of Hydrous Fluids in Subduction Zones. Chemical Geology, 160(4):291-308. https://doi.org/10.1016/s0009-2541(99)00104-7
      Chen, S. Y., Yang, J. S., Luo, L. Q., et al., 2007. MORB-Type Eclogites in the Lhasa Block, Tibet, China:Petrochemical Evidence. Geological Bulletin of China, 26(10):1327-1339 (in Chinese with English abstract).
      Chen, S. Y., Yang, J. S., Xu, X. Z., et al., 2008. Study of Lu-Hf Geochemical Tracing and LA-ICPMS U-Pb Isotopic Dating of the Sumdo Eclogite from the Lhasa Block, Tibet. Acta Petrologica Sinica, 24(7):1528-1538 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807010
      Choe, W. H., Lee, J. I., Lee, M. J., et al., 2007. Origin of E-MORB in a Fossil Spreading Center:The Antarctic-Phoenix Ridge, Drake Passage, Antarctica. Geosciences Journal, 11(3):185-199. https://doi.org/10.1007/bf02913932
      Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites Across the Archean-Proterozoic Boundary:Identification and Significance. Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      Ding, Z. G., Tong, L. X., Liu, X. H., et al., 2018. Metamorphic P-T Path of High-Pressure Mafic Granulite (Retrograded Eclogite) from Dinggye of Tibet and Its Tectonic Implication. Earth Science, 43(1):220-235 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.013
      Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., et al., 2004. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 226(3-4):347-366. https://doi.org/10.1016/j.epsl.2004.07.019
      Fitton, J. G., Saunders, A. D., Norry, M. J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3-4):197-208. https://doi.org/10.1016/s0012-821x(97)00170-2
      Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/ 0012-821x(88)90132-x doi: 10.1016/0012-821x(88)90132-x
      Hofmann, A. W., HÉMond, C., 2006. The Origin of E-MORB. Geochimica et Cosmochimica Acta, 70(18):A257. https://doi.org/10.1016/j.gca.2006.06.517
      Hou, Z. Q., Mo, X. X., Zhu, Q. W., et al., 1996. Mantle Plume in the Sanjiang Paleo-Tethyan Lithosphere:Evidence from Mid-Ocean Ridge Basalts. Acta Geoscientia Sinica, 17(4):362-375 (in Chinese with English abstract).
      Li, C., Huang, X. P., Zhai, Q. G., et al., 2006. The Longmu Co-Shuanghu-Jitang Plate Suture and the Northern Boundary of Gondwanaland in the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4):136-147 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604011
      Li, C., Zhai, Q. G., Dong, Y. S., et al., 2006. Discovery of Eclogite and Its Geological Significance in Qiangtang Area, Central Tibet. Chinese Science Bulletin, 51(9):1095-1100. https://doi.org/10.1007/s11434-006-1095-3
      Li, M., Han, Z. Z., Mi, C. Y., et al., 2015. Mineral Geochemistry of Eclogite in the Sulu Belt and Its Implication. Periodical of Ocean University of China, 45(1):63-70 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb201501010
      Liu, X. J., Xu, J. F., Wang, S. Q., et al., 2009. Geochemistry and Dating of E-MORB Type Mafic Rocks from Dalabute Ophiolite in West Junggar, Xinjiang and Geological Implications. Acta Petrologica Sinica, 25(6):1373-1389 (in Chinese Withenglish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200906009
      Melson, W. G., Vallier, T. L., Wright, T. L., et al., 1976. Chemical Diversity of Abyssal Volcanic Glass Erupted along Pacific, Atlantic, and Indian Ocean Sea-Floor Spreading Centers. Geophysical Monograph Series, 19:351-367. https://doi.org/10.1029/GM019p0351
      Michael, P., 1995. Regionally Distinctive Sources of Depleted MORB:Evidence from Trace Elements and H2O. Earth and Planetary Science Letters, 131(3-4):301-320. https://doi.org/10.1016/0012-821x(95)00023-6
      Morimoto, N., 1988. Nomenclature of Pyroxenes. Bulletin de Minéralogie, 111(5):535-550. https://doi.org/10.3406/bulmi.1988.8099
      Niu, Y., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3-4):471-483. https://doi.org/10.1016/s0012-821x(97)00048-4
      Niu, Y. L., Collerson, K. D., Batiza, R., et al., 1999. Origin of Enriched-Type Mid-Ocean Ridge Basalt at Ridges Far from Mantle Plumes:The East Pacific Rise at 11°20'N. Journal of Geophysical Research:Solid Earth, 104(B4):7067-7087. https://doi.org/10.1029/1998jb900037
      Pearce, J. A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on Cyprus. Tectonophysics, 25(1-2):41-67. https://doi.org/10.1016/0040-1951(75)90010-4
      Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Pearce, J. A., Baker, P. E., Harvey, P. K., et al., 1995. Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc. Journal of Petrology, 36(4):1073-1109. https://doi.org/10.1093/petrology/36.4.1073
      Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1):77-94. https://doi.org/10.1144/gsl.sp.1984.016.01.06
      Schilling, J. G., Thompson, G., Kingsley, R., et al., 1985. Hotspot-Migrating Ridge Interaction in the South Atlantic. Nature, 313(5999):187-191. https://doi.org/10.1038/313187a0
      Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, B., Xie, C. M., Fan, J. J., et al., 2018. Genesis and Tectonic Setting of Middle Permian OIB-Type Mafic Rocks in the Sumdo Area, Southern Lhasa Terrane. Lithos, 324-325:429-438. https://doi.org/10.1016/j.lithos.2018.11.015
      Wang, J. R., Chen, W. F., Zhang, Q., et al., 2017. Preliminary Research on Data Mining of N-MORB and E-MORB:Discussion on Method of the Basalt Discrimination Diagrams and the Character of MORB's Mantle Source. Acta Petrologica Sinica, 33(3):993-1005 (in Chinese with English abstract).
      Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London.
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wood, D. A., 1980. The Application of a ThHfTa Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8
      Workman, R. K., Hart, S. R., Jackson, M., et al., 2004. Recycled Metasomatized Lithosphere as the Origin of the Enriched Mantle Ⅱ (EM2) End-Member:Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4):Q04008. https://doi.org/10.1029/2003gc000623
      Xiao, W. J., Windley, B. F., Yan, Q. R., et al., 2006. SHRIMP Zircon Age of the Aermantai Ophiolite in the North Xinjiang Area, China and Its Tectonic Implications. Acta Geologica Sinica, 80(1):32-37 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200601004
      Xu, X. Z., Yang, J. S., Li, T. F., et al., 2007. SHRIMP U-Pb Ages and Inclusions of Zircons from the Sumdo Eclogite in the Lhasa Block, Tibet, China. Geological Bulletin of China, 26(10):1340-1355 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200710012
      Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6):1847-1860 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80(12):1787-1792 (in Chinese with English abstract).
      Yang, J. S., Xu, Z. Q., Li, T. F., et al., 2007. Oceanic Subduction-Type Eclogite in the Lhasa Block, Tibet, China:Remains of the Paleo-Tethys Ocean Basin?. Geological Bulletin of China, 26(10):1277-1287 (in Chinese with English abstract).
      Yang, J. S., Xu, Z. Q., Zhang, J. X., et al., 2009. Tectonic Setting of Main High- and Ultrahigh-Pressure Metamorphic Belts in China and Adjacent Region and Discussion on Their Subduction and Exhumation Mechanism. Acta Petrologica Sinica, 25(7):1529-1560 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907001
      Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1):76-89. https://doi.org/10.1016/j.jseaes.2008.04.001
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zhai, Q. G., Jahn, B. M., Li, X. H., et al., 2017. Zircon U-Pb Dating of Eclogite from the Qiangtang Terrane, North-Central Tibet:A Case of Metamorphic Zircon with Magmatic Geochemical Features. International Journal of Earth Sciences, 106(4):1239-1255. https://doi.org/10.1007/s00531-016-1418-9
      Zhai, Q. G., Li, C., Wang, J., et al., 2009. Petrology, Mineralogy, and 40Ar/39Ar Chronology for Rongma Blueschist from Central Qiangtang, Northern Tibet. Acta Petrologica Sinica, 25(9):2281-2288 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909020
      Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011. Triassic Eclogites from Central Qiangtang, Northern Tibet, China:Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1-2):173-189. https://doi.org/10.1016/j.lithos.2011.02.004
      Zhang, C., Bader, T., van Roermund, H., et al., 2018a. The Metamorphic Evolution and Tectonic Significance of the Sumdo HP-UHP Metamorphic Terrane, Central-South Lhasa Block, Tibet. Geological Society, London, Special Publications, 474(1):209-229. https://doi.org/10.1144/sp474.4
      Zhang, C., Bader, T., Zhang, L. M., et al., 2018b. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Magazine, 156(7):1175-1189. https://doi.org/10.1017/s001675681800033x
      Zhang, L., Ye, Y., Qin, S., et al., 2018c. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1040-1048. https://doi.org/10.1007/s12583-018-0880-7
      Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018d. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1005-1009. https://doi.org/10.1007/s12583-018-0852-y
      Zhang, D. D., Zhang, L. F., Zhao, Z. D., 2011. A Study of Metamorphism of Sumdo Eclogite in Tibet, China. Earth Science Frontiers, 18(2):116-126 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010
      Zhang, L. F., Ai, Y. L., Li, Q., et al., 2005. The Formation and Tectonic Evolution of UHP Metamorphic Belt in Southwestern Tianshan, Xinjiang. Acta Petrologica Sinica, 21(4):1029-1038 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200504001
      Zhang, X. Z., Dong, Y. S., Li, C., et al., 2014. A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Subduction and Collision:Constraints on Geochemistry of Eclogite and Blueschist in Central Qiangtang, Tibetan Plateau. Acta Petrologica Sinica, 30(10):2821-2834 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003
      Zhang, X. Z., Dong, Y. S., Li, C., et al., 2010. Formation and Significance of Jadeite-Garnet-Mica Schist Newly Discovered in Longmu Co-Shuanghu Suture Zone, Central Qingtang. Earth Science Frontiers, 17(1):93-103 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201001008
      Zhang, X. Z., Wang, Dong, Y. S., et al., 2017. High-Pressure Granulite Facies Overprinting during the Exhumation of Eclogites in the Bangong-Nujiang Suture Zone, Central Tibet:Link to Flat-Slab Subduction. Tectonics, 36(12):2918-2935. https://doi.org/10.1002/2017tc004774
      Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1):82-98 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.005
      Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Mesozoic High-Pressure Metamorphism within the Lhasa Block, Tibet and Its Implications for Regional Tectonics. Earth Science Frontiers, 16(2):140-151 (in Chinese with English abstract).
      Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571. doi: 10.1146/annurev.ea.14.050186.002425
      陈松永, 杨经绥, 罗立强, 等, 2007.西藏拉萨地块MORB型榴辉岩的岩石地球化学特征.地质通报, 26(10):1327-1339. doi: 10.3969/j.issn.1671-2552.2007.10.011
      陈松永, 杨经绥, 徐向珍, 等, 2008.西藏拉萨地块松多榴辉岩的锆石Lu/Hf同位素研究及LA-ICPMS U-Pb定年.岩石学报, 24(7):1528-1538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807010
      丁自耕, 仝来喜, 刘小汉, 等, 2018.西藏定结高压基性麻粒岩(退变榴辉岩)的变质P-T轨迹及构造意义.地球科学, 43(1):220-235 http://earth-science.net/WebPage/Article.aspx?id=3717
      侯增谦, 莫宣学, 朱勤文, 等, 1996. "三江"古特提斯地幔热柱——洋中脊玄武岩证据.地球学报, 17(4):362-375. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB604.002.htm
      李才, 黄小鹏, 翟庆国, 等, 2006.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界.地学前缘, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011
      李敏, 韩宗珠, 秘丛永, 等, 2015.苏鲁榴辉岩带的矿物地球化学研究及意义.中国海洋大学学报(自然科学版), 45(1):63-70. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201501010
      刘希军, 许继峰, 王树庆, 等, 2009.新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义.岩石学报, 25(6):1373-1389. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906009
      王金荣, 陈万峰, 张旗, 等, 2017.N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论.岩石学报, 33(3):993-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201703023
      肖文交, Windley, B. F., 阎全人, 等, 2006.北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义.地质学报, 80(1):32-37. doi: 10.3321/j.issn:0001-5717.2006.01.004
      徐向珍, 杨经绥, 李天福, 等, 2007.青藏高原拉萨地块松多榴辉岩的锆石SHRIMPU-Pb年龄及锆石中的包裹体.地质通报, 26(10):1340-1355. doi: 10.3969/j.issn.1671-2552.2007.10.012
      许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001
      杨经绥, 许志琴, 李天福, 等, 2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留?.地质通报, 26(10):1277-1287. doi: 10.3969/j.issn.1671-2552.2007.10.006
      杨经绥, 许志琴, 张建新, 等, 2009.中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨.岩石学报, 25(7):1529-1560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907001
      翟庆国, 李才, 王军, 等, 2009.藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学.岩石学报, 25(9):2281-2288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909020
      张丁丁, 张立飞, 赵志丹, 2011.西藏松多榴辉岩变质作用研究.地学前缘, 18(2):116-126. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010
      张立飞, 艾永亮, 李强, 等, 2005.新疆西南天山超高压变质带的形成与演化.岩石学报, 21(4):1029-1038. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504001
      张修政, 董永胜, 李才, 等, 2014.从洋壳俯冲到陆壳俯冲和碰撞:来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据.岩石学报, 30(10):2821-2834. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003
      张修政, 董永胜, 李才, 等, 2010.羌塘中部龙木错-双湖缝合带中硬玉石榴石二云母片岩的成因及意义.地学前缘, 17(1):93-103. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001008
      张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. http://earth-science.net/WebPage/Article.aspx?id=3726
      曾令森, 刘静, 高利娥, 等, 2009.青藏高原拉萨地块早中生代高压变质作用及大地构造意义.地学前缘, 16(2):140-151. doi: 10.3321/j.issn:1005-2321.2009.02.010
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(4)

      Article views (5374) PDF downloads(81) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return