Citation: | Dong Yuchao, Xie Chaoming, Fan Jianjun, Yu Yunpeng, Hao Yujie, 2019. Discussion on Protolith Properties of Eclogites in Sumdo Area, Tibet and Their Significance. Earth Science, 44(7): 2234-2248. doi: 10.3799/dqkx.2019.148 |
Becker, H., Jochum, K. P., Carlson, R. W., 1999. Constraints from High-Pressure Veins in Eclogites on the Composition of Hydrous Fluids in Subduction Zones. Chemical Geology, 160(4):291-308. https://doi.org/10.1016/s0009-2541(99)00104-7
|
Chen, S. Y., Yang, J. S., Luo, L. Q., et al., 2007. MORB-Type Eclogites in the Lhasa Block, Tibet, China:Petrochemical Evidence. Geological Bulletin of China, 26(10):1327-1339 (in Chinese with English abstract).
|
Chen, S. Y., Yang, J. S., Xu, X. Z., et al., 2008. Study of Lu-Hf Geochemical Tracing and LA-ICPMS U-Pb Isotopic Dating of the Sumdo Eclogite from the Lhasa Block, Tibet. Acta Petrologica Sinica, 24(7):1528-1538 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807010
|
Choe, W. H., Lee, J. I., Lee, M. J., et al., 2007. Origin of E-MORB in a Fossil Spreading Center:The Antarctic-Phoenix Ridge, Drake Passage, Antarctica. Geosciences Journal, 11(3):185-199. https://doi.org/10.1007/bf02913932
|
Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites Across the Archean-Proterozoic Boundary:Identification and Significance. Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0
|
Ding, Z. G., Tong, L. X., Liu, X. H., et al., 2018. Metamorphic P-T Path of High-Pressure Mafic Granulite (Retrograded Eclogite) from Dinggye of Tibet and Its Tectonic Implication. Earth Science, 43(1):220-235 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.013
|
Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., et al., 2004. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 226(3-4):347-366. https://doi.org/10.1016/j.epsl.2004.07.019
|
Fitton, J. G., Saunders, A. D., Norry, M. J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3-4):197-208. https://doi.org/10.1016/s0012-821x(97)00170-2
|
Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/ 0012-821x(88)90132-x doi: 10.1016/0012-821x(88)90132-x
|
Hofmann, A. W., HÉMond, C., 2006. The Origin of E-MORB. Geochimica et Cosmochimica Acta, 70(18):A257. https://doi.org/10.1016/j.gca.2006.06.517
|
Hou, Z. Q., Mo, X. X., Zhu, Q. W., et al., 1996. Mantle Plume in the Sanjiang Paleo-Tethyan Lithosphere:Evidence from Mid-Ocean Ridge Basalts. Acta Geoscientia Sinica, 17(4):362-375 (in Chinese with English abstract).
|
Li, C., Huang, X. P., Zhai, Q. G., et al., 2006. The Longmu Co-Shuanghu-Jitang Plate Suture and the Northern Boundary of Gondwanaland in the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4):136-147 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604011
|
Li, C., Zhai, Q. G., Dong, Y. S., et al., 2006. Discovery of Eclogite and Its Geological Significance in Qiangtang Area, Central Tibet. Chinese Science Bulletin, 51(9):1095-1100. https://doi.org/10.1007/s11434-006-1095-3
|
Li, M., Han, Z. Z., Mi, C. Y., et al., 2015. Mineral Geochemistry of Eclogite in the Sulu Belt and Its Implication. Periodical of Ocean University of China, 45(1):63-70 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb201501010
|
Liu, X. J., Xu, J. F., Wang, S. Q., et al., 2009. Geochemistry and Dating of E-MORB Type Mafic Rocks from Dalabute Ophiolite in West Junggar, Xinjiang and Geological Implications. Acta Petrologica Sinica, 25(6):1373-1389 (in Chinese Withenglish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200906009
|
Melson, W. G., Vallier, T. L., Wright, T. L., et al., 1976. Chemical Diversity of Abyssal Volcanic Glass Erupted along Pacific, Atlantic, and Indian Ocean Sea-Floor Spreading Centers. Geophysical Monograph Series, 19:351-367. https://doi.org/10.1029/GM019p0351
|
Michael, P., 1995. Regionally Distinctive Sources of Depleted MORB:Evidence from Trace Elements and H2O. Earth and Planetary Science Letters, 131(3-4):301-320. https://doi.org/10.1016/0012-821x(95)00023-6
|
Morimoto, N., 1988. Nomenclature of Pyroxenes. Bulletin de Minéralogie, 111(5):535-550. https://doi.org/10.3406/bulmi.1988.8099
|
Niu, Y., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3-4):471-483. https://doi.org/10.1016/s0012-821x(97)00048-4
|
Niu, Y. L., Collerson, K. D., Batiza, R., et al., 1999. Origin of Enriched-Type Mid-Ocean Ridge Basalt at Ridges Far from Mantle Plumes:The East Pacific Rise at 11°20'N. Journal of Geophysical Research:Solid Earth, 104(B4):7067-7087. https://doi.org/10.1029/1998jb900037
|
Pearce, J. A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on Cyprus. Tectonophysics, 25(1-2):41-67. https://doi.org/10.1016/0040-1951(75)90010-4
|
Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
|
Pearce, J. A., Baker, P. E., Harvey, P. K., et al., 1995. Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc. Journal of Petrology, 36(4):1073-1109. https://doi.org/10.1093/petrology/36.4.1073
|
Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1):77-94. https://doi.org/10.1144/gsl.sp.1984.016.01.06
|
Schilling, J. G., Thompson, G., Kingsley, R., et al., 1985. Hotspot-Migrating Ridge Interaction in the South Atlantic. Nature, 313(5999):187-191. https://doi.org/10.1038/313187a0
|
Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Wang, B., Xie, C. M., Fan, J. J., et al., 2018. Genesis and Tectonic Setting of Middle Permian OIB-Type Mafic Rocks in the Sumdo Area, Southern Lhasa Terrane. Lithos, 324-325:429-438. https://doi.org/10.1016/j.lithos.2018.11.015
|
Wang, J. R., Chen, W. F., Zhang, Q., et al., 2017. Preliminary Research on Data Mining of N-MORB and E-MORB:Discussion on Method of the Basalt Discrimination Diagrams and the Character of MORB's Mantle Source. Acta Petrologica Sinica, 33(3):993-1005 (in Chinese with English abstract).
|
Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London.
|
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
|
Wood, D. A., 1980. The Application of a ThHfTa Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8
|
Workman, R. K., Hart, S. R., Jackson, M., et al., 2004. Recycled Metasomatized Lithosphere as the Origin of the Enriched Mantle Ⅱ (EM2) End-Member:Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4):Q04008. https://doi.org/10.1029/2003gc000623
|
Xiao, W. J., Windley, B. F., Yan, Q. R., et al., 2006. SHRIMP Zircon Age of the Aermantai Ophiolite in the North Xinjiang Area, China and Its Tectonic Implications. Acta Geologica Sinica, 80(1):32-37 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200601004
|
Xu, X. Z., Yang, J. S., Li, T. F., et al., 2007. SHRIMP U-Pb Ages and Inclusions of Zircons from the Sumdo Eclogite in the Lhasa Block, Tibet, China. Geological Bulletin of China, 26(10):1340-1355 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200710012
|
Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6):1847-1860 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
|
Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80(12):1787-1792 (in Chinese with English abstract).
|
Yang, J. S., Xu, Z. Q., Li, T. F., et al., 2007. Oceanic Subduction-Type Eclogite in the Lhasa Block, Tibet, China:Remains of the Paleo-Tethys Ocean Basin?. Geological Bulletin of China, 26(10):1277-1287 (in Chinese with English abstract).
|
Yang, J. S., Xu, Z. Q., Zhang, J. X., et al., 2009. Tectonic Setting of Main High- and Ultrahigh-Pressure Metamorphic Belts in China and Adjacent Region and Discussion on Their Subduction and Exhumation Mechanism. Acta Petrologica Sinica, 25(7):1529-1560 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907001
|
Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1):76-89. https://doi.org/10.1016/j.jseaes.2008.04.001
|
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
|
Zhai, Q. G., Jahn, B. M., Li, X. H., et al., 2017. Zircon U-Pb Dating of Eclogite from the Qiangtang Terrane, North-Central Tibet:A Case of Metamorphic Zircon with Magmatic Geochemical Features. International Journal of Earth Sciences, 106(4):1239-1255. https://doi.org/10.1007/s00531-016-1418-9
|
Zhai, Q. G., Li, C., Wang, J., et al., 2009. Petrology, Mineralogy, and 40Ar/39Ar Chronology for Rongma Blueschist from Central Qiangtang, Northern Tibet. Acta Petrologica Sinica, 25(9):2281-2288 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909020
|
Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011. Triassic Eclogites from Central Qiangtang, Northern Tibet, China:Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1-2):173-189. https://doi.org/10.1016/j.lithos.2011.02.004
|
Zhang, C., Bader, T., van Roermund, H., et al., 2018a. The Metamorphic Evolution and Tectonic Significance of the Sumdo HP-UHP Metamorphic Terrane, Central-South Lhasa Block, Tibet. Geological Society, London, Special Publications, 474(1):209-229. https://doi.org/10.1144/sp474.4
|
Zhang, C., Bader, T., Zhang, L. M., et al., 2018b. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Magazine, 156(7):1175-1189. https://doi.org/10.1017/s001675681800033x
|
Zhang, L., Ye, Y., Qin, S., et al., 2018c. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1040-1048. https://doi.org/10.1007/s12583-018-0880-7
|
Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018d. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1005-1009. https://doi.org/10.1007/s12583-018-0852-y
|
Zhang, D. D., Zhang, L. F., Zhao, Z. D., 2011. A Study of Metamorphism of Sumdo Eclogite in Tibet, China. Earth Science Frontiers, 18(2):116-126 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010
|
Zhang, L. F., Ai, Y. L., Li, Q., et al., 2005. The Formation and Tectonic Evolution of UHP Metamorphic Belt in Southwestern Tianshan, Xinjiang. Acta Petrologica Sinica, 21(4):1029-1038 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200504001
|
Zhang, X. Z., Dong, Y. S., Li, C., et al., 2014. A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Subduction and Collision:Constraints on Geochemistry of Eclogite and Blueschist in Central Qiangtang, Tibetan Plateau. Acta Petrologica Sinica, 30(10):2821-2834 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003
|
Zhang, X. Z., Dong, Y. S., Li, C., et al., 2010. Formation and Significance of Jadeite-Garnet-Mica Schist Newly Discovered in Longmu Co-Shuanghu Suture Zone, Central Qingtang. Earth Science Frontiers, 17(1):93-103 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201001008
|
Zhang, X. Z., Wang, Dong, Y. S., et al., 2017. High-Pressure Granulite Facies Overprinting during the Exhumation of Eclogites in the Bangong-Nujiang Suture Zone, Central Tibet:Link to Flat-Slab Subduction. Tectonics, 36(12):2918-2935. https://doi.org/10.1002/2017tc004774
|
Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1):82-98 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.005
|
Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Mesozoic High-Pressure Metamorphism within the Lhasa Block, Tibet and Its Implications for Regional Tectonics. Earth Science Frontiers, 16(2):140-151 (in Chinese with English abstract).
|
Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023
|
Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571. doi: 10.1146/annurev.ea.14.050186.002425
|
陈松永, 杨经绥, 罗立强, 等, 2007.西藏拉萨地块MORB型榴辉岩的岩石地球化学特征.地质通报, 26(10):1327-1339. doi: 10.3969/j.issn.1671-2552.2007.10.011
|
陈松永, 杨经绥, 徐向珍, 等, 2008.西藏拉萨地块松多榴辉岩的锆石Lu/Hf同位素研究及LA-ICPMS U-Pb定年.岩石学报, 24(7):1528-1538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807010
|
丁自耕, 仝来喜, 刘小汉, 等, 2018.西藏定结高压基性麻粒岩(退变榴辉岩)的变质P-T轨迹及构造意义.地球科学, 43(1):220-235 http://earth-science.net/WebPage/Article.aspx?id=3717
|
侯增谦, 莫宣学, 朱勤文, 等, 1996. "三江"古特提斯地幔热柱——洋中脊玄武岩证据.地球学报, 17(4):362-375. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB604.002.htm
|
李才, 黄小鹏, 翟庆国, 等, 2006.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界.地学前缘, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011
|
李敏, 韩宗珠, 秘丛永, 等, 2015.苏鲁榴辉岩带的矿物地球化学研究及意义.中国海洋大学学报(自然科学版), 45(1):63-70. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201501010
|
刘希军, 许继峰, 王树庆, 等, 2009.新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义.岩石学报, 25(6):1373-1389. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906009
|
王金荣, 陈万峰, 张旗, 等, 2017.N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论.岩石学报, 33(3):993-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201703023
|
肖文交, Windley, B. F., 阎全人, 等, 2006.北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义.地质学报, 80(1):32-37. doi: 10.3321/j.issn:0001-5717.2006.01.004
|
徐向珍, 杨经绥, 李天福, 等, 2007.青藏高原拉萨地块松多榴辉岩的锆石SHRIMPU-Pb年龄及锆石中的包裹体.地质通报, 26(10):1340-1355. doi: 10.3969/j.issn.1671-2552.2007.10.012
|
许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
|
杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001
|
杨经绥, 许志琴, 李天福, 等, 2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留?.地质通报, 26(10):1277-1287. doi: 10.3969/j.issn.1671-2552.2007.10.006
|
杨经绥, 许志琴, 张建新, 等, 2009.中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨.岩石学报, 25(7):1529-1560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907001
|
翟庆国, 李才, 王军, 等, 2009.藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学.岩石学报, 25(9):2281-2288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909020
|
张丁丁, 张立飞, 赵志丹, 2011.西藏松多榴辉岩变质作用研究.地学前缘, 18(2):116-126. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010
|
张立飞, 艾永亮, 李强, 等, 2005.新疆西南天山超高压变质带的形成与演化.岩石学报, 21(4):1029-1038. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504001
|
张修政, 董永胜, 李才, 等, 2014.从洋壳俯冲到陆壳俯冲和碰撞:来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据.岩石学报, 30(10):2821-2834. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003
|
张修政, 董永胜, 李才, 等, 2010.羌塘中部龙木错-双湖缝合带中硬玉石榴石二云母片岩的成因及意义.地学前缘, 17(1):93-103. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001008
|
张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. http://earth-science.net/WebPage/Article.aspx?id=3726
|
曾令森, 刘静, 高利娥, 等, 2009.青藏高原拉萨地块早中生代高压变质作用及大地构造意义.地学前缘, 16(2):140-151. doi: 10.3321/j.issn:1005-2321.2009.02.010
|