Citation: | Zhang Bochuan, Fan Jianjun, Luo Anbo, Yu Yunpeng, Hao Yujie, 2019. Characteristics and Tectonic Significance of the Miocene Strata in the Milashan Area, Eastern Lhasa Terrane. Earth Science, 44(7): 2392-2407. doi: 10.3799/dqkx.2019.149 |
Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
|
Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
|
Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2007. Geochemistry and Origin of Miocene Volcanic Rocks in Cazé Area, South-Western Qinghai-Xizang Plateau. Geochimica, 36(5): 437-447 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200705002
|
Chen, J. L., Xu, J. F., Wang, B. D., et al., 2010. Origin of Cenozoic Alkaline Potassic Volcanic Rocks at KonglongXiang, Lhasa Terrane, Tibetan Plateau: Products of Partial Melting of a Mafic Lower-Crustal Source?. Chemical Geology, 273(3-4): 286-299. https://doi.org/10.1016/j.chemgeo.2010.03.003
|
Chen, X. J., Xu, Z. Q., Meng, Y. K., et al., 2014. Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet: Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 30(8): 2253-2268 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010
|
Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021. https://doi.org/10.1130/g19796.1
|
Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1-2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008
|
Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
|
Foley, S. F., Venturelli, G., Green, D. H., et al., 1987. The Ultrapotassic Rocks: Characteristics, Classification, and Constraints for Petrogenetic Models. Earth-Science Reviews, 24(2): 81-134. https://doi.org/10.1016/0012-8252(87)90001-8
|
Guo, Z. F., Wilson, M., Liu, J. Q., 2007. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1-2): 205-224. https://doi.org/10.1016/j.lithos.2006.09.011
|
Guo, Z. F., Wilson, M., Zhang, M. L., et al., 2015. Post-Collisional Ultrapotassic Mafic Magmatism in South Tibet: Products of Partial Melting of Pyroxenite in the Mantle Wedge Induced by Roll-Back and Delamination of the Subducted Indian Continental Lithosphere Slab. Journal of Petrology, 56(7): 1365-1406. https://doi.org/10.1093/petrology/egv040
|
Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
|
Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East–west Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
|
Kadioglu, Y. K., Dilek, Y., 2010. Structure and Geochemistry of the Adakitic Horoz Granitoid, Bolkar Mountains, South-Central Turkey, and Its Tectonomagmatic Evolution. International Geology Review, 52(4-6): 505-535. https://doi.org/10.1080/09507110902954847
|
Kay, R. W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u
|
Liu, D., 2017. Geochemistry and Petrogenesis of Post-collisional Potassic and Utrapotassic Rocks in Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Liu, D., Zhao, Z. D., Zhu, D. C., et al., 2014a. Zircon Xenocrysts in Tibetan Ultrapotassic Magmas: Imaging the Deep Crust through Time. Geology, 42(1): 43-46. https://doi.org/10.1130/g34902.1
|
Liu, D., Zhao, Z. D., Zhu, D. C., et al., 2014b. Postcollisional Potassic and Ultrapotassic Rocks in Southern Tibet: Mantle and Crustal Origins in Response to India-Asia Collision and Convergence. Geochimica et Cosmochimica Acta, 143: 207-231. https://doi.org/10.1016/j.gca.2014.03.031
|
Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2): 265-282. https://doi.org/10.1007/s12583-016-0925-8
|
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
|
Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142-1171 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.713
|
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399
|
Nomade, S., Renne, P. R., Mo, X. X., et al., 2004. Miocene Volcanism in the Lhasa Block, Tibet: Spatial Trends and Geodynamic Implications. Earth and Planetary Science Letters, 221(1-4): 227-243. https://doi.org/10.1016/s0012-821x(04)00072-x
|
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
|
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
|
Qu, X. M., Hou, Z. Q., Li, Y., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/s0024-4937(04)00027-1
|
Sun, C. G., Zhao, Z. D., Mo, X. X., et al., 2008. Enriched Mantle Source and Petrogenesis of Sailipu Ultrapotassic Rocks in Southwestern Tibetan Plateau:Constraints from Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 24(2): 249-264 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b1f3203436d0914bd26209ce17d4feac&encoded=0&v=paper_preview&mkt=zh-cn
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientia Sinica, 38(5): 571-613 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705002
|
Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
|
Wang, B., Xie, C. M., Li, C., et al., 2017. The Discovery of Wenmulang Ophiolite in Songduo Area of the Tibetan Plateau and Its Geological Significance. Geological Bulletin of China, 36(11): 2076-2081 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711017
|
Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
|
Wang, Q., Zhu, D. C., Cawood, P. A., et al., 2015. Eocene Magmatic Processes and Crustal Thickening in Southern Tibet: Insights from Strongly Fractionated Ca. 43Ma Granites in the Western Gangdese Batholith. Lithos, 239: 128-141. https://doi.org/10.1016/j.lithos.2015.10.003
|
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
|
Wei, Y. Q., 2017. Mesozoic Volcanic and Sedimentary Rocks on the Southern Margin of Lhasa Terrane, Southern Tibet: Geochronology, Geochemistry and Tectonic Implications (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Williams, H. M., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094
|
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
|
Xu, W. C., Zhang, H. F., Guo, L., et al., 2010. Miocene High Sr/Y Magmatism, South Tibet: Product of Partial Melting of Subducted Indian Continental Crust and Its Tectonic Implication. Lithos, 114(3-4): 293-306. https://doi.org/10.1016/j.lithos.2009.09.005
|
Yang, D. M., He, Z. H., Huang, Y. C., et al., 2005. Metamorphism Characteristics of Songduo Group in Menba Township Mozhugongka County, Tibet and the Discussion on Its Age. Journal of Jilin University (Earth Science Edition), 35(4): 430-435 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200504004
|
Zheng, Y. C., Hou, Z. Q., Li, Q. Y., et al., 2012. Origin of Late Oligocene Adakitic Intrusives in the Southeastern Lhasa Terrane: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes, and Whole-Rock Geochemistry. Lithos, 148: 296-311. https://doi.org/10.1016/j.lithos.2012.05.026
|
Zhang, Q., Ran, H., Li, C. D., 2012. A-Type Granite: What is the Essence?. Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8c2890609571b9a5f39733c2b59b003c
|
Zhao, Z. D., Mo, X. X., Nomade, S., et al., 2006. Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau: Spatial and Temporal Distribution and Its' Implications. Acta Petrologica Sinica, 22(4): 787-794 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5b842cb5c28cd916ca619e87f192869d&encoded=0&v=paper_preview&mkt=zh-cn
|
陈建林, 许继峰, 康志强, 等, 2007.青藏高原西南部查孜地区中新世钾质火山岩地球化学及其成因.地球化学, 36(5): 437-447. doi: 10.3321/j.issn:0379-1726.2007.05.002
|
陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8): 2253-2268. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010
|
刘栋, 2017.青藏高原后碰撞钾质-超钾质岩石的地球化学特征与岩石成因(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126687.htm
|
孟元库, 马士委, 许志琴, 等, 2018.冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因.地球科学, 43(4): 1142-1171. http://earth-science.net/WebPage/Article.aspx?id=3787
|
孙晨光, 赵志丹, 莫宣学, 等, 2008.青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因: 锆石U-Pb年代学和Hf同位素制约.岩石学报, 24(2): 249-264. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200802008.htm
|
唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(5): 571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002
|
王斌, 解超明, 李才, 等, 2017.青藏高原松多地区温木朗蛇绿岩的发现及其地质意义.地质通报, 36(11): 2076-2081. doi: 10.3969/j.issn.1671-2552.2017.11.017
|
魏友卿, 2017.西藏拉萨地体南缘中生代火山岩与碎屑沉积岩的年代学、地球化学及构造意意义(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126688.htm
|
吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7): 745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
|
杨德明, 和钟铧, 黄映聪, 等, 2005.西藏墨竹工卡县门巴地区松多岩群变质作用特征及时代讨论.吉林大学学报(地球科学版), 35(4):430-435. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200504004
|
张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么.岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
|
赵志丹, 莫宣学, Nomade, S., 等, 2006.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报, 22(4): 787-794. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604003
|