• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 5
    May  2020
    Turn off MathJax
    Article Contents
    Ma Anlai, Jin Zhijun, Li Huili, Gu Yi, Qiu Nansheng, Zhu Xiuxiang, Wu Xian, Yang Xin, Wang Shi, 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157
    Citation: Ma Anlai, Jin Zhijun, Li Huili, Gu Yi, Qiu Nansheng, Zhu Xiuxiang, Wu Xian, Yang Xin, Wang Shi, 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157

    Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China

    doi: 10.3799/dqkx.2019.157
    • Received Date: 2019-07-01
    • Publish Date: 2020-05-15
    • Volatile reservoir and light reservoir have been discovered in the ultra-deep Ordovician Yijianfang to Yingshan Formations with vertical depths ranging from 7 200 to 7 863.60 m from North Shuntuoguole area in the Tarim basin. The limit depth of oil phase occurring has been continuously challenging the traditional theory. This study focuses on geochemical characteristics and secondary alterations of reservoirs from different faults in North Shuntuoguole area. Most oils of different faults from North Shuntuoguole area are characterized by light carbon isotope, C23TT/C21TT > 1, lower C28 sterane content, relatively high abundance of dibenzothiophene, suggesting that the source rock of oil in the North Shuntuoguole area is similar to that of Tahe oilfield. Using (C21+C22) sterane/(C27~C29) sterane, C27 diasterane/C27 regular steane, MPI index, dibenthiophene series maturity, the oil maturity trend in the North Shuntuoguole area is No.1 fault (including splay fault) ≈No.3 fault > secondary fault > No.5 fault > No.7 fault. The oil maturity is controlled by the reservoir initial static temperature. The natural gas in North Shuntuoguole area is wet gas and has light methane carbon isotope, ranging from -50.7‰ to -44.7‰. The gas maturity trend in different faults is similar to that of the oil. The abundance of (4-+3-) methyldiamantane in the oils from different faults is in the range of 9.25-36.44 μg/g, indicating low degree of oil cracking. The lower thiadiamondoids can be detected in the oils, with content ranging from 0.76 to 18.88 μg/g, showing low degree of thermochemical sulfate reduction (TSR). The Ordovician reservoir has suffered little gas invasion from the natural gas characteristics. The formation temperature indicates the geothermal gradient in the North Shuntuoguole area is low, only about 2.12 ℃/100 m. The formation temperature of strata buried at 8 000 m depth at present is in the range of 160-170 ℃. The maximum paleo-geotemperature of Ordovician has never been higher than 170 ℃, without reaching the temperature threshold of great scale oil cracking. The long term of low geothermal environment combined with low degree secondary alteration is the key to the preservation of ultra-deep Ordovician volatile reservoir in the North Shuntuogule area.

       

    • loading
    • Cai, C. F., Amrani, A., Worden, R. H., et al., 2016. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182:88-108. https://doi.org/10.1016/j.gca.2016.02.036
      Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments. Organic Geochemistry, 26(7/8):483-489. https://doi.org/10.1016/s0146-6380(97)00022-3 doi: 10.1016-S0146-6380(97)00022-3/
      Connan, J., Cassou, A. M., 1980. Properties of Gases and Petroleum Liquids Derived from Terrestrial Kerogen at Various Maturation Levels. Geochimica et Cosmochimica Acta, 44(1):1-23. https://doi.org/10.1016/0016-7037(80)90173-8
      Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731):54-57. https://doi.org/10.1038/19953
      Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5):878-888 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201805003
      Hughes, W. B., Holba, A. G., Dzou, L. I. P., 1995. The Ratios of Dibenzothiophene to Phenanthrene and Pristane to Phytane as Indicators of Depositional Environment and Lithology of Petroleum Source Rocks. Geochimica et Cosmochimica Acta, 59(17):3581-3598. https://doi.org/10.1016/0016-7037(95)00225-o. doi: 10.1016/0016-7037(95)00225-O
      Jiang, N. H., Zhu, G. Y., Zhang, S. C., et al., 2007. Detection of 2-Thiaadamantanes in the Oils from Well TZ83 in Tarim Basin and Its Geological Implication. Chinese Science Bulletin, 52(24):2871-2875 (in Chinese with English abstract). doi: 10.1360/csb2007-52-24-2871
      Jiao, F.Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5):831-839 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201705002
      Kvalheim, O. M., Christy, A. A., Telnæs, N., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51(7):1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7
      Li, J., Li, Z.S., Wang, X.B., et al., 2017. New Indexes and Charts for Genesis Identification of Multiple Natural Gases. Petroleum Exploration & Development, 44(4):503-512 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201704003
      Li, P.J., Chen, H.H., Tang, D.Q., et al., 2017.Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1):93-104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701007
      Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78:1-22. https://doi.org/10.1016/j.orggeochem.2014.10.004
      Li, Y., Xiong, Y. Q., Liang, Q. Y., et al., 2018. The Application of Diamondoid Indices in the Tarim Oils. AAPG Bulletin, 102(2):267-291. https://doi.org/10.1306/0424171518217073
      Liu, Q. Y., Wu, X. Q., Wang, X. F., et al., 2019. Carbon and Hydrogen Isotopes of Methane, Ethane, and Propane:A Review of Genetic Identification of Natural Gas. Earth-Science Reviews, 190:247-272. https://doi.org/10.1016/j.earscirev.2018.11.017
      Ma, A. L., 2016. Kinetics of Oil-Cracking for Different Types of Marine Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 1(1):35-43. https://doi.org/10.1016/j.jnggs.2016.03.001
      Ma, A.L., Jin, Z.J., Wang, Y., 2006. Problems of Oil-Source Correlation for Marine Reservoirs in Paleozoic Craton Area in Tarim Basin and Future Direction of Research. Oil & Gas Geology, 27(3):356-362 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200603010
      Ma, A. L., Jin, Z. J., Zhu, C. S., 2018a. Detection and Research Significance of Thiadiamondoids from Crude oil in Well Shunnan 1, Tarim Basin. Acta Petrolei Sinica, 38(1):42-53 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201801004
      Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018b. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi 2 from Magaiti Slope, Tarim Basin:Evidences from Molecular Markers.Oil & Gas Geology, 39(4):730-737 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201804011.htm
      Ma, A.L., Jin, Z.J., Zhu, C.S., et al., 2009. Quantitative Analysis on Absolute Concentration of Diamondoids in Oils from Tahe Oilfield. Acta Petrolei Sinica, 30(2):214-218 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200902009
      Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2017. Cracking and Thermal Maturity of Ordovician Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 2(4):239-252. https://doi.org/10.1016/j.jnggs.2017.12.001
      Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61(10):1440-1450. https://doi.org/10.1007/s11430-017-9244-7
      Pepper, A. S., Dodd, T. A., 1995. Simple Kinetic Models of Petroleum Formation. Part Ⅱ:Oil-Gas Cracking. Marine and Petroleum Geology, 12(3):321-340. https://doi.org/10.1016/0264-8172(95)98382-f doi: 10.1016/0264-8172(95)98382-F
      Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Volume 2. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge.
      Qi, L.X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3):38-51 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201603004
      Quigley, T. M., MacKenzie, A. S., 1988. The Temperatures of Oil and Gas Formation in the Sub-surface. Nature, 333(6173):549-552. https://doi.org/10.1038/333549a0
      Radke, M., Welte, D. H., Willsch, H., 1982. Geochemical Study on a Well in the Western Canada Basin:Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter. Geochimica et Cosmochimica Acta, 46(1):1-10. https://doi.org/10.1016/0016-7037(82)90285-x doi: 10.1016/0016-7037(82)90285-X
      Schoell, M., Carlson, R. M. K., 1999. Diamondoids and Oil are not Forever. Nature, 399(6731):15-16. https://doi.org/10.1038/19847
      Tian, H., Wang, Z. M., Xiao, Z. Y., et al., 2006. Oil Cracking to Gases:Kinetic Modeling and Geological Significance. Chinese Science Bulletin, 51(22):2763-2770. https://doi.org/10.1007/s11434-006-2188-8
      Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer, Berlin. https: //doi.org/10.1007/978-3-642-87813-8
      Wang, Q.R., Chen, H.H., Zhao, Y.T., et al., 2018.Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin. Earth Science, 43(2):577-593 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.026 http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018
      Waples, D. W., 2000. The Kinetics of In-Reservoir Oil Destruction and Gas Formation:Constraints from Experimental and Empirical Data, and from Thermodynamics. Organic Geochemistry, 31(6):553-575. https://doi.org/10.1016/s0146-6380(00)00023-1 doi: 10.1016/S0146-6380(00)00023-1
      Wei, Z. B., Moldowan, J. M., Fago, F., et al., 2007a. Origins of Thiadiamondoids and Diamondoidthiols in Petroleum. Energy & Fuels, 21(6):3431-3436. https://doi.org/10.1021/ef7003333 http://cn.bing.com/academic/profile?id=c484aece8d234d34313c91c5ffafbf95&encoded=0&v=paper_preview&mkt=zh-cn
      Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007b. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil Cracking:Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2):227-249. https://doi.org/10.1016/j.orggeochem.2006.09.011
      Zhang, S. C., Huang, H. P., 2005. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 1. Oil Family Classification. Organic Geochemistry, 36(8):1204-1214. https://doi.org/10.1016/j.orggeochem.2005.01.013 http://cn.bing.com/academic/profile?id=719c1550a1442e347bed232581bb4f41&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, S. C., Su, J., Wang, X. M., et al., 2011. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 3. Thermal Cracking of Liquid Hydrocarbons and Gas Washing as the Major Mechanisms for Deep Gas Condensate Accumulations. Organic Geochemistry, 42(11):1394-1410. https://doi.org/10.1016/j.orggeochem.2011.08.013
      Zhao, X. Z., Jin, F. M., Wang, Q., et al., 2011. Niudong 1 Ultra-Deep and Ultra-High Temperature Subtle Buried Hill Field in Bohai Bay Basin:Discovery and Significance. Acta Petrolei Sinica, 32(6):915-926 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=01c7e5816be8d62a22a610de64d64a1d&encoded=0&v=paper_preview&mkt=zh-cn
      Zhu, G. Y., Milkov, A. V., Chen, F. R., et al., 2018a. Non-Cracked Oil in Ultra-Deep High-Temperature Reservoirs in the Tarim Basin, China. Marine and Petroleum Geology, 89:252-262. https://doi.org/10.1016/j.marpetgeo.2017.07.019
      Zhu, G. Y., Zhang, Y., Zhang, Z. Y., et al., 2018b. High Abundance of Alkylated Diamondoids, Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-Rich LS2 Condensate in the Tarim Basin. Organic Geochemistry, 123:136-143. https://doi.org/10.1016/j.orggeochem.2018.07.003
      Zhu, G. Y., Wang, H. T., Weng, N., 2016. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-buried Cambrian Gas Condensate Reservoir in Tarim Basin. Marine and Petroleum Geology, 69:1-12. https://doi.org/10.1016/j.marpetgeo.2015.10.007
      Zhu, G. Y., Zhang, S. C., Su, J., et al., 2012. The Occurrence of Ultra-Deep Heavy Oils in the Tabei Uplift of the Tarim Basin, NW China. Organic Geochemistry, 52:88-102. https://doi.org/10.1016/j.orggeochem.2012.08.012
      邓尚, 李慧莉, 张仲培, 等, 2018.塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系.石油与天然气地质, 39(5):878-888. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201805003
      姜乃煌, 朱光有, 张水昌, 等, 2007.塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义.科学通报, 52(24):2871-2875. doi: 10.3321/j.issn:0023-074x.2007.24.009
      焦方正, 2017.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义.石油与天然气地质, 38(5):831-839. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201705002
      李剑, 李志生, 王晓波, 等, 2017.多元天然气成因判识新指标及图版.石油勘探与开发, 44(4):503-512. http://d.old.wanfangdata.com.cn/Periodical/syktykf201704003
      李培军, 陈红汉, 唐大卿, 等., 2017.塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系.地球科学, 42(1):93-104. http://d.old.wanfangdata.com.cn/Periodical/dqkx201701007
      马安来, 金之钧, 王毅, 2006.塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向, 石油与天然气地质, 27(3):356-362. doi: 10.3321/j.issn:0253-9985.2006.03.010
      马安来, 金之钧, 朱翠山, 等, 2009.塔河油田原油中金刚烷化合物绝对定量分析.石油学报, 30(2):214-218. doi: 10.3321/j.issn:0253-2697.2009.02.009
      马安来, 金之钧, 朱翠山, 2018a.塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义.石油学报, 39(1):42-53. http://d.old.wanfangdata.com.cn/Periodical/syxb201801004
      马安来, 金之钧, 朱翠山, 等, 2018b.塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用:来自分子标志物的证据.石油与天然气地质, 39(4):730-737. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201804010
      漆立新, 2016.塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义.中国石油勘探, 21(3):38-51. doi: 10.3969/j.issn.1672-7703.2016.03.004
      田辉, 王招明, 肖中尧, 等., 2006.原油裂解成气动力学模拟及其意义.科学通报, 51(15):1821-1827. doi: 10.3321/j.issn:0023-074X.2006.15.014
      王倩茹, 陈红汉, 赵玉涛, 等, 2018.塔中北坡顺托果勒地区志留系油气成藏期差异性分析.地球科学, 43(2):577-593. http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018
      赵贤正, 金凤鸣, 王权, 等, 2011.渤海湾盆地牛东超深潜山高温油气藏的发现及其意义.石油学报, 32(6):915-926.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(19)  / Tables(5)

      Article views (1776) PDF downloads(98) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return