• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 5
    May  2020
    Turn off MathJax
    Article Contents
    Cao Yan, Kang Zhiqiang, Xu Jifeng, Li Qiang, Yang Feng, Wei Tianwei, Wei Naishao, Wang Rui, 2020. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Dianzhong Formation, Shiquanhe Area, Western Lhasa Block. Earth Science, 45(5): 1573-1592. doi: 10.3799/dqkx.2019.161
    Citation: Cao Yan, Kang Zhiqiang, Xu Jifeng, Li Qiang, Yang Feng, Wei Tianwei, Wei Naishao, Wang Rui, 2020. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Dianzhong Formation, Shiquanhe Area, Western Lhasa Block. Earth Science, 45(5): 1573-1592. doi: 10.3799/dqkx.2019.161

    Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Dianzhong Formation, Shiquanhe Area, Western Lhasa Block

    doi: 10.3799/dqkx.2019.161
    • Received Date: 2019-07-04
    • Publish Date: 2020-05-15
    • Volcanic rocks of the Linzizong Group are widely distributed in the southern part of the Lhasa Block, and are considered to related with tectonic settings during the transition from the northward subduction of Neo-Tethys to continent-continent collision.In this paper, we present detailed chronology, elemental geochemistry and isotope geochemistry of volcanic rock samples from the Linzizong Group, Shiquanhe area. The results show that LA-ICP-MS U-Pb zircon ages from volcanic rock samples of the Dianzhong Formation are mostly between 67.1±1.7 Ma and 70.8±1.1 Ma, establishing a Late Cretaceous age.The Dianzhong Formation in the study area comprises basaltic andesite, andesite and rhyolite. Medium-basic volcanic rocks belong to the potassium calcium-alkaline series, with low TiO2 (average < 1%) and high Al2O3 (average > 15%) contents, and are enriched in large ion lithophile elements (LILE), such as K, Rb, Th, and U, and depleted in high field strength elements (HFSE) such as Nb, Ta, Zr and Ti, thereby showing obvious island-arc volcanic affinity.The isotope study yields (87Sr/86Sr)i ratios of 0.707 437, 0.707 672, and εNd(t) of -5.06 and -4.30. The acid volcanic rocks have high SiO2 (76.01%-76.77%), high K2O (4.93%-4.98%) and high K2O/Na2O (1.41%-1.45%), and belong to the high potassium calc-alkaline series, with a relatively high Mg# (average 45.38), enrichment of large ion lithophile elements (LILE) such as K, Rb, Th, U, depletion of high field strength elements (HFSE) such as Nb, Ta, Zr, Ti, and have significant negative Eu and Sr anomalies. The above characteristics suggest that the medium-basic volcanic rocks of the Dianzhong Formation were generated from partial melting of the overlying mantle wedge during northward subduction of Neo-Tethys, and were crustally contaminated during emplacement, whereas the acidic rocks may have been derived from partial melting of the overlying crust and the addition of a small amount of mantle material.In addition, both chronology and geochemical characteristics indicate that rock units sampled during this study are not part of the Zenong Group, as considered by the previous studies, but should be redefined as volcanic rocks of the Linzizong Group.

       

    • loading
    • Aizawa, Y., Tatsumi, Y., Yamada, H., 1999. Element Transport by Dehydration of Subducted Sediments:Implication for Arc and Ocean Island Magmatism. Island Arc, 8(1):38-46. https://doi.org/10.1046/j.1440-1738.1999.00217.x
      Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That Do not Report 204Pb. Chemical Geology, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X
      Bacon, C.R., Druitt, T.H., 1988.Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon.Contributions to Mineralogy & Petrology, 98(2):224-256. https://doi.org/10.1007/BF00402114
      Bonin, B., 2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2):1-24. doi: 10.1016/j.lithos.2004.04.042
      Boztug, D., Harlavan, Y., Arehart, G.B., et al., 2007. K-Ar Age, Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Diverigi-Sivas Region, Eastern-Central Anatolia, Turkey. Lithos, 97(1):193-218.
      Brenan, J.M., Shaw, H.F., Ryerson, F.J., et al., 1995. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900℃ and 2.0 GPa:Constraints on the Trace Element Chemistry of Mantle and Deep Crustal Fluids. Geochimica et Cosmochimica Acta, 59(16):3331-3350. https://doi.org/10.1016/0016-7037(95)00215-L
      Castillo, P.R., Newhall, C.G., 2004. Geochemical Constraints on Possible Subduction Components in Lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines. Journal of Petrology, 45(6):1089-1108. doi: 10.1093/petrology/egh005
      Chen, B.B., Ding, L., Xu, Q., et al., 2016. U-Pb Age Framework of the Linzizong Volcanic Roks from the Linzhou Basin, Tibet. Quaternary Science, 36(5):1037-1054 (in Chinese with English abstract).
      Chen, J., Huang, B., Sun, L., 2010. New Constraints to the Onset of the India-Asia Collision:Paleomagnetic Reconnaissance on the Linzizong Group in The Lhasa Block, China. Tectonophysics, 489(1-4):189-209. doi: 10.1016/j.tecto.2010.04.024
      Chen, J., Huang, B., Yi, Z., et al., 2014. Paleomagnetic and 40Ar/39Ar Geochronological Results from the Linzizong Group, Linzhou Basin, Lhasa Terrane, Tibet:Implications to Paleogene Paleolatitude and Onset of the India-Asia Collision. Journal of Asian Earth Sciences, 96(57):162-177. https://doi.org/10.1016/j.jseaes.2014.09.007
      Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. doi: 10.1038/347662a0
      Depaolo, D.J., 1988. Neodymium Isotope Geochemistry. Minerals & Rocks, 20(3):159-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212803504/
      Depaolo, D.J., Linn, A.M., Schubert, G., 1990. The Continental Crustal Age Distribution:Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96:2071-2088. http://cn.bing.com/academic/profile?id=6453837abbe952b8cefa75675fa3baec&encoded=0&v=paper_preview&mkt=zh-cn
      Fu, W.C., Kang, Z.Q., Pan, W.B., 2014. Geochemistry, Zircon U-Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shiquan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6):850-859 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201406008
      Green, D.H., 1976. Experimental Testing of Equilibrium Partial Melting of Peridotite under Water-Saturated, High-Pressure Conditions. The Canadian Mineralogist, 14(3):255-268. http://cn.bing.com/academic/profile?id=8d9bedceaf436c8a9e53de62ff27c0b9&encoded=0&v=paper_preview&mkt=zh-cn
      Guffanti, M., Clynne, M.A., Muffler, L.J.P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust. Journal of Geophysical Research Atmospheres, 101(B2):3003-3013. doi: 10.1029/95JB03463
      He, S., Kapp, P., DeCelles, P.G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433(1-4):15-37. https://doi.org/10.16/j.tecto.2007.01.005
      Hofmann, A.W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust and Oceanic Crust. Earth and Planetary Science Letters, 90:297-314. doi: 10.1016/0012-821X(88)90132-X
      Hoskin, P.W., Black, L.P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20f7cb4f6d72be021ecb081c5fa74229
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110:1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Huang, W., Dupont, N.G., Lippert, P.C., et al. 2015. What was the Paleogene Latitude of the Lhasa Terrane? A Reassessment of the Geochronology and Paleomagnetism of Linzizong Volcanic Rocks (Linzhou Basin, Tibet). Tectonic, 34(3):594-622. https://doi.org/10.1002/2014tc003787
      Huang, Y., Hawkesworth, C., Smith, I., 2000. Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel, New Zealand:Implications for Mantle Enrichment Processes. Chemical Geology, 164(3):219-238.
      Jiang, Y.H., Jiang, S.Y., Dai, B.Z., et al., 2009. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China:Implications for a Continental arc to Rifting. Lithos, 107(3-4):185-204. doi: 10.1016/j.lithos.2008.10.006
      Johnson, K.T.M., Dick, H.J.B., Shimizu, N., 1990. Melting in the Oceanic Upper Mantle:An Ion Microprobe Study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research:Solid Earth, 95(B3):2661- 2678. doi: 10.1029/JB095iB03p02661
      Kang, Z.Q., Xu, J.F., Chen, J.L., 2010. The Geochronology of Sangri Group Volcanic Rocks in Tibet:Constraints from Later Mamen Intrusions. Geochimica, 39(6):520-530. http://cn.bing.com/academic/profile?id=ed89a5e3d5b9fbb4f9f3d09e5655bdbb&encoded=0&v=paper_preview&mkt=zh-cn
      Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008. Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block:Products of Southward Subducting of the Slainajap Ocean. Acta Petrologica Sinica, 24(2):303-314(in Chinese with English abstract).
      Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia:Magmas from the African Superswell. Journal of Petrology, 45(4):793-834 doi: 10.1093/petrology/egg112
      Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust:1. Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Science Letters, 148(1-2):193-205. doi: 10.1016/S0012-821X(97)00018-6
      Lee, H.Y., Chung, S.L., Lo, C.H., et al., 2009. Eocene Neotethyan Slab Break off in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2):20-35. https://doi.org/10.1016/j.tecto.2009.02.031
      Li, H.L., Li, G.M., Liu, H., et al., 2019. Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet:Constraints from Geochemistry, Zircon U-Pb Chronology and Sr-Nd-Pb-Hf Isotopes. Earth Science, 44(7):1-27. http://d.old.wanfangdata.com.cn/Periodical/dqkx201907007
      Li, Y., Zhang, S.Z., Li, F.Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8):2755-2766. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808016
      Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Geochimica, 32(1):91-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200301013
      Liang, Y.P., Zhu, J., Ci, Q., et al., 2010. Zircon U-Pb Ages and Geochemistry of Volcanic Rocks from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau. Earth Science, 35(2):211-223 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201002005
      Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082
      Liu, Y., Liu, H.C., Li, X.H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25(6):552-558 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600048595
      Ludwig, K.R., 2003. User's Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4:25-32. doi: 10.1016-j.immuni.2011.10.010/
      Meng, Y.K., Xu, Z.Q., Gao, C.S., et al., 2018. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet Acta Petrol. Sinica, 34(3):513-546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201803001
      Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4):321-355. doi: 10.2475/ajs.274.4.321
      Mo, X.X., Deng, J.F., Dong, F.L., et al., 2001. Volcanic Petrotectonic Assemblages in Sanjiang Orogenic Belt, SW China and Implication for Tectonics. Geological Journal of China Universities, 7(2):121-138 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200102001
      Mo, X.X., Hou, Z. Q., Niu, Y.L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1-2):225-242. doi: 10.1016/j.lithos.2006.10.005
      Mo, X.X., Niu, Y., Dong, G.C., et al., 2008. Contribution of Syn-Collisional Felsic Magma Time to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4):49-67. doi: 10.1016/j.chemgeo.2008.02.003
      Mo, X.X., Pan, G.T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectonic-Magmatic Events. Earth Science Frontiers, 13(6):43-51 (in Chinese with English abstract).
      Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Sci. Front, 10(3):135-148 (in Chinese with English abstract).
      Pan, G.T., Mo, X.X., Hou. Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrol Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      Pearce, J.A., Peate, D.W., 1995 Tectonic Implications of the Composition of Volcanic ARC Magmas. Annu. Rev. Earth Pl. Sc., 23(1):251-285. doi: 10.1146/annurev.ea.23.050195.001343
      Pichavant, M., Montel, J.M., Richard, L.R., et al., 1992. Apatite Solubility in Peraluminous Liquids:Experimental Data and an Extension of the Harrison-Watson Model. Geochimica et Cosmochimica Acta, 56:3855-3861. https://doi.org/10.1016/0016-7037(92)90178-L
      Pin, C., Paquette, J.L., 1997. A Mantle-Derived Bimodal Suite in the Hercynian Belt:Nd Isotope and Trace Element Evidence for a Subduction-Related Rift Origin of the Late Devonian Brévenne Metavolcanics, Massif Central (France). Contributions to Mineralogy & Petrology, 129(2-3):222-238.
      Roberts, M.P., Clemens, J.D., 1993. Origin of High- Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9):825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
      Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust. ElsevierPergamon, Oxford, 1-64. https://doi.org/10.1016/0016-7037(95)00038-2
      Schmidberger, S.S., Henger, E., 1999. Geochemistry and Isotope Systematic of Calc-Alkaline Volcanic Rocks from the Saar-Nahe Basin (SW Germany):Implications for Late-Variscan Orogenic Development. Contributions to Mineralogy and Petrology, 135:373-385. doi: 10.1007/s004100050518
      Sun, S.S., Mcdonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society London Special Publications, 42(1):313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, W., Bennett, V.C., Kamenetsky, V.S., 2004. The Mechanism of Re Enrichment in arc Magmas:Evidence from Lau Basin Basaltic Glasses and Primitive Melt Inclusions. Earth & Planetary Science Letters, 222(1):101-114.
      Tatsumi, Y., Takahashi, T., 2006. Operation of Subduction Factory and Production of Andesite. Journal of Mineralogical and Petrological Sciences, 101(3):145-153. doi: 10.2465/jmps.101.145
      Taylor, S.R., Mclennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
      Tischendorf, G., Paelchen, W., 1985. Zur Klassifikation von Granitoiden/Classification of Granitoids. Zeitschrift Fuer Geologische Wissenschaften, 13(5):615-627.
      Wang, L.Y., Zhen, Y.Y., Gao, S.B., et al., 2016. The Discovery of the Early Cretaceous Zenong Group Volcanic Rocks and Geological Significance in Jiwa Area in South of the Central Lhasa Subterrane. Acta Petrologica Sinica, 32(5):1543-1555. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605019
      Wang, Q.L., 2011. Geochemistry and Zircon U-Pb Chronology of Linzizong Group Volcanic Rocks in Western Gangdese, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wen, D.R., Liu, D., Chung, S.L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gandese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chem. Geol., 252(3/4):191-201.
      Wilson, M., 1986. Igneous Petrogenesis: A Global Tectonic Approach.Unw. in Hyman, London, 1-466.
      Winchester, J.A., Floyd, P.A., 1976. Geochemical Magma Type Discrimination:Application to Altered and Metamorphosed Basic Igneous Rocks. Earth & Planetary Science Letters, 28(3):459-469. http://cn.bing.com/academic/profile?id=85e3562ed2fb67875b027901b867e039&encoded=0&v=paper_preview&mkt=zh-cn
      Wood, D.A., 1980. The Application of a Th, Hf, Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth & Planetary Science Letters, 50(1):11-30. doi: 10.1016-0012-821X(80)90116-8/
      Xie, B.J., Zhou, S., Xie, G.G., et al., 2013. Zircon SHRIMP U-Pb Data and Regional Contrasts of Geochemical Characteristics of Linzizong Volcanic Rocks from Konglong and Dinrenle Region, Middle Gangdese belt. Acta Petrol Sinica, 29(11):3803-3814 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013
      Yao, P., Li, J.G., Wang, Q.H., et al., 2006. Discovery and Geological Significance of the Adakite in Gangise Island Arc Belt, Xizang (Tibet). Acta Petrol Sinica, 22(3):612-620 (in Chinese with English abstract).
      Yogodzinski, G.M., Kay, R.W., Volynets, O.N., et al. 1995. Magnesian Andesite in the Western Aleutian Komandorsky Region:Implications for Slab Melting and Processes in the Mantle Wedge. Geological Society of America Bulletin, 107:505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
      You, C.F., Spivack, A.J., Gieskes, J.M., et al., 1996. Boron Contents and Isotopic Compositions in Pore Waters:A New Approach to Determine Temperature Induced Artifacts-Geochemical Implications. Marine Geology, 129(3-4):351-361. doi: 10.1016/0025-3227(96)83353-6
      Yu, F., Li, Z.G., Zhao, Z.D., et al., 2010. Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area Central-Western Gandese, Tibet. Acta Petrol Sinica, 26(7):2217-2225 (in Chinese with English abstract).
      Yuan, H., Gao, S., Liu, X., et al., 2010. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards & Geoanalytical Research, 28(3):353-370. http://cn.bing.com/academic/profile?id=4a8e7a7fca3d10ce694c49bdb9efd4b5&encoded=0&v=paper_preview&mkt=zh-cn
      Zeng, L.S., Gao, L.E., Xie, K.J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust. Earth & Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005
      Zhao, Z.D., Mo, X.X., Nomand, S., et al., 2006. Post- Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau:Spatial and Tem Poral Distribution and Its Implications. Acta Petralogica Sinica, 22(4):787-794 (in Chinese with English abstract).
      Zhao, Z.H., 2016. Trace Element Geochemistry. Science Press, Beijing (in Chinese).
      Zhou, S., Mo, X.X., Dong, G.C., et al., 2004. 40Ar/39Ar Geochronology of Genozoic Linzizong Volcanic Rocks from Linzhou Basin, Tibet. Chinese Science Bull., 49(20):2095-2103 (in Chinese with English abstract). doi: 10.1360/csb2004-49-20-2095
      Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2008. Zircon U-Pb Geochronology of Zenong Group Volcanic Rocks in Coqen Area of the Gangdese, Tibet and Tectonic Significance. Acta Petrologica Sinica, 24(3):401-412 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803001
      Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5):442-471. doi: 10.2747/0020-6814.50.5.442
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2007. Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya:A Probable Example of Plume-Lithosphere Interaction. Journal of Asian Earth Sciences, 29(2-3):320-335. doi: 10.1016/j.jseaes.2005.12.004
      Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5:14289. doi: 10.1038/srep14289
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301:241-255. doi: 10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan margin. Chemical Geology, 328(11):290-308. http://cn.bing.com/academic/profile?id=aafc0264bf3633bd3ed640019fd13753&encoded=0&v=paper_preview&mkt=zh-cn
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002
      陈贝贝, 丁林, 许强, 等, 2016.西藏林周盆地林子宗群火山岩的精细年代框架.第四纪研究, 36(5):1037-1054. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201605003
      付文春, 康志强, 潘会彬, 2014.西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义.地质通报, 33(6):850-859. doi: 10.3969/j.issn.1671-2552.2014.06.008
      康志强, 许继峰, 陈建林, 等, 2010.西藏南部桑日群火山岩的时代:来自晚期马门侵入体的约束.地球化学, 39(6):520-530. http://d.old.wanfangdata.com.cn/Periodical/dqhx201006002
      康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物.岩石学报, 24(2):303-314. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802010
      李洪梁, 李光明, 刘洪, 等, 2019.拉萨地体西段达若地区古新世花岗斑岩成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束.地球科学, 44(7):1-27. http://d.old.wanfangdata.com.cn/Periodical/dqkx201907007
      李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43(8):2755-2766. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808016
      梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1):91-96. doi: 10.3321/j.issn:0379-1726.2003.01.013
      梁银平, 朱杰, 次邛, 等, 2010.青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征.地球科学, 35(2):211-223. doi: 10.3969/j.issn.1672-6561.2010.02.017
      刘颖, 刘海臣, 李献华, 1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学, 25(6):552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004
      孟元库, 许志琴, 高存山, 等, 2018.藏南冈底斯带中段始新世岩浆作用的厘定及其大地构造意义.岩石学报, 34(3):513-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803001
      莫宣学, 邓晋福, 董方浏, 等, 2001.西南三江造山带火山岩-构造组合及其意义.高校地质学报, 7(2):121-138. doi: 10.3969/j.issn.1006-7493.2001.02.001
      莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51 doi: 10.3321/j.issn:1005-2321.2006.06.007
      莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      王力圆, 郑有业, 高顺宝, 等, 2016.中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义.岩石学报, 32(5):1543-1555. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605019
      王乔林, 2011.冈底斯西段林子宗群火山岩的地球化学特征及锆石年代学研究(硕士学位论文).北京: 中国地质大学.
      谢冰晶, 周肃, 谢国刚, 等, 2013.西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比.岩石学报, 29(11):3803-3814. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013
      姚鹏, 李金高, 王全海, 等, 2006.西藏冈底斯南缘火山-岩浆弧带中桑日群Adakite的发现及其意义.岩石学报, 22(3):612-620. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603010
      于枫, 李志国, 赵志丹, 等, 2010.西藏冈底斯带中西部措麦地区林子宗群火山岩地球化学特征及意义.岩石学报, 26(7):2217-2225.
      赵志丹, 莫宣学, Nomand, S., 等, 2006.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报, 22(4):787-794. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604003
      赵振华, 2016.微量元素地球化学原理.北京: 科学出版社.
      周肃, 莫宣学, 董国臣, 等, 2004.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架.科学通报, 49(20):2095-2103. doi: 10.3321/j.issn:0023-074X.2004.20.014
      朱弟成, 莫宣学, 赵志丹, 等, 2008.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义.岩石学报, 24(3):401-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(4)

      Article views (1881) PDF downloads(101) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return