Citation: | Lu Hong, Wang Li, Yang Xinxin, Hao Guang, Liu Mingzhu, 2019. Deep Vulnerability Assessment of Hydraulic Fracturing Effect on Groundwater. Earth Science, 44(9): 2920-2930. doi: 10.3799/dqkx.2019.184 |
Birdsell, D. T., Rajaram, H., Dempsey, D., et al., 2015. Hydraulic Fracturing Fluid Migration in the Subsurface: A Review and Expanded Modeling Results. Water Resources Research, 51(9): 7159-7188. https://doi.org/10.1002/2015wr017810 doi: 10.1002/2015WR017810
|
Brufatto, C., Cochran, J., Conn, L., et al., 2003.From Mud to Cement—Building Gas Wells. Oil Field Review, 15(3):62-76.
|
Cai, Z. S., Ofterdinger, U., 2014. Numerical Assessment of Potential Impacts of Hydraulically Fractured Bowland Shale on Overlying Aquifers. Water Resources Research, 50(7): 6236-6259. https://doi.org/10.1002/2013wr014943 doi: 10.1002/2013WR014943
|
Chen, J.Y., Yang, X.S., Dang, J.X., et al., 2011.Internal Structure and Permeability of Wenchuan Earthquake Fault. Chinese Journal of Geophysics, 54(7):1805-1816 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201107014
|
Engle, M. A., Reyes, F. R., Varonka, M. S., et al., 2016. Geochemistry of Formation Waters from the Wolfcamp and "Cline" Shales: Insights into Brine Origin, Reservoir Connectivity, and Fluid Flow in the Permian Basin, USA.Chemical Geology, 425: 76-92. https://doi.org/10.1016/j.chemgeo.2016.01.025
|
Fan, Q., Wang, G.L., Lin, W.J., et al., 2007. New Method for Evaluating the Vulnerability of Groundwater. Journal of Hydraulic Engineering, 38(5):601-605 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200705014
|
Gu, H.L., Yue, X.J., Chen, H.H., et al., 2018. Assessment Model of Groundwater Vulnerability in Shale Gas Exploitation Area.WaterResourceProtection, 34(5):57-62 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/szybh201805009
|
Guan, X., Zuo, R., Meng, L., et al., 2017.Study on Evaluation Method of Site Suitability for River Water Sources. China Sciencepaper, 12(3):319-326 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkjlwzx201703013
|
Harrison, S. S., 1983. Evaluating System for Ground-Water Contamination Hazards Due to Gas-Well Drilling on the Glaciated Appalachian Plateau. Ground Water, 21(6): 689-700. https://doi.org/10.1111/j.1745-6584.1983.tb01940.x
|
He, Y.Z., Chen, H.G., Xie, Y., et al., 2015.Discovery of Cambrian Carbonate Platform Margin Shoal in the Southeastern Margin of Upper Yangtze Platform and Its Geological Significance—Example from Shiqian-Cengong Area of Guizhou Province. Geological Survey of China, 2(5):38-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDC201505006.htm
|
Jackson, R. E., Gorody, A. W., Mayer, B., et al., 2013. Groundwater Protection and Unconventional Gas Extraction: The Critical Need for Field-Based Hydrogeological Research. Groundwater, 51(4): 488-510. https://doi.org/10.1111/gwat.12074
|
Jiang, G.H., 2002. Study on Groundwater Vulnerability in Guan Zhong Basin (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract).
|
Jin, A.F., Li, G.H., Zhang, X., et al., 2012.The Risk Source Identification and Classification Methodology of Groundwater Pollution. Earth Science, 37(2):247-252 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cfeaf96d11f5c80e008d7b068032f2df&encoded=0&v=paper_preview&mkt=zh-cn
|
Kissinger, A., Helmig, R., Ebigbo, A., et al., 2013. Hydraulic Fracturing in Unconventional Gas Reservoirs: Risks in the Geological System, Part 2. Environmental Earth Sciences, 70(8): 3855-3873. https://doi.org/10.1007/s12665-013-2578-6
|
Ladevèze, P., Séjourné, S., Rivard, C., et al., 2017. Defining the Natural Fracture Network in a Shale Gas Play and Its Cover Succession: The Case of the Utica Shale in Eastern Canada. Journal of Structural Geology, 108: 157-170. https://doi.org/10.1016/j.jsg.2017.12.007 http://cn.bing.com/academic/profile?id=d8ad1e5832aa26c60c84e9cc08997dae&encoded=0&v=paper_preview&mkt=zh-cn
|
Lange, T., Sauter, M., Heitfeld, M., et al., 2013. Hydraulic Fracturing in Unconventional Gas Reservoirs: Risks in the Geological System Part 1. Environmental Earth Sciences, 70(8): 3839-3853. https://doi.org/10.1007/s12665-013-2803-3
|
Li, S.K., Yuan, Y., Li, X., et al., 2018.Building up a Risk Assessment Index System of Groundwater Pollution in Shale Gas Development. Research of Environmental Sciences, 31(5):911-918 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201805015
|
Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential.Journal of Earth Science, 28(6): 1020-1031. https://doi.org/10.1007/s12583-016-0932-x
|
Lin, M., Ji, D.F., Cui, C.F., et al., 2016.Groundwater Vulnerability Partition in Ashi River Basin. Research of Environmental Sciences, 29(12):1773-1781 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201612006
|
Ma, J.Z., 2001.Groundwater Vulnerability Assessement for the South Rim of Tarim Basin. Journal of Desert Research, 21(2) :170-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm200102012
|
Pfunt, H., Houben, G., Himmelsbach, T., 2016. Numerical Modeling of Fracking Fluid Migration through Fault Zones and Fractures in the North German Basin. Hydrogeology Journal, 24(6): 1343-1358. https://doi.org/10.1007/s10040-016-1418-7
|
Reagan, M. T., Moridis, G. J., Keen, N. D., et al., 2015. Numerical Simulation of the Environmental Impact of Hydraulic Fracturing of Tight/Shale Gas Reservoirs on Near-Surface Groundwater: Background, Base Cases, Shallow Reservoirs, Short-Term Gas, and Water Transport. Water Resources Research, 51(4): 2543-2573. https://doi.org/10.1002/2014wr016086 doi: 10.1002/2014WR016086
|
Vengosh, A., Jackson, R. B., Warner, N., et al., 2014. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States. Environmental Science & Technology, 48(15): 8334-8348. https://doi.org/10.1021/es405118y http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ac0752f312291dd5e2a2744fa928ab4
|
Wang, M.M., Chen, Y.J., Xing, Z.G., et al., 2018.Groundwater Vulnerability Assessment of Open-Pit Coal Mine in Steppe Area Based on DRTIC-SL. China Mining Magazine, 27(10):165-169 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201810035
|
Wang, R.Y., Ding, W.L., Gong, D.J., et al., 2016.Gas Preservation Conditions of Marine Shale in Northern Guizhou Area:A Case Study of the Lower Cambrian Niutitang Formation in the Cen'gong Block, Guizhou Province. Oil & Gas Geology, 37(1):45-55 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201601008.htm
|
Wang, S.L., 2017.The Influence of Structure on Accumulation of Shale Gas in Lower Cambrian Niutitang Formation in Cen'gong, Guizhou (Dissertation).Guizhou University, Guiyang (in Chinese with English abstract).
|
Wang, X.C., Wu, G., Yan, J.D., 2018.Current Status and Trends of Shale Gas Development and Technology Development in the World. China Scitechnology Business, (12):17-21 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0d584d0426f0a997dd8eb350f193872
|
Wang, Y.F., Zhai, G.Y., Leng, J.G., et al., 2017.Well TX1 Fracturing Effect Evaluation of Niutitang Formation Shale in Cengong, Guizhou. Earth Science, 42(7):1107-1115 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707007
|
Wang, Z.H., Deng, M., Cheng, J.X., et al., 2018.Influence of Fault and Magmatism on Oil and Gas Preservation Condition, to the West of Kangdian Ancient Continent: Taking Yanyuan Basin as an Example. Earth Science, 43(10):3616-3624 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810022.htm
|
Warner, N. R., Jackson, R. B., Darrah, T. H., et al., 2012. Reply to Engelder: Potential for Fluid Migration from the Marcellus Formation Remains Possible. Proceedings of the National Academy of Sciences, 109(52): E3626. https://doi.org/10.1073/pnas.1217974110
|
Wilson, M. P., Worrall, F., Davies, R. J., et al., 2017. Shallow Aquifer Vulnerability from Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site. Water Resources Research, 53(11): 9922-9940. https://doi.org/10.1002/2017wr021234 doi: 10.1002/2017WR021234
|
Xie, C.B., Yuan, H.Y., Guo, Y.Y., 1996.Multi-Factor's Weight Allocation Model. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 17(4):31-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HBSL604.005.htm
|
Zhang, D.X., Yang, T.Y., 2015.Environmental Impacts of Hydraulic Fracturing in Shale Gas Development in the United States. Petroleum Exploration and Development, 42(6):801-807 (in Chinese with English abstract).
|
Zhao, Z.H., Xue, X.L., Zhang, G.Q., et al., 2007. Hydrocarbon Potential of Lower Paleozoic Formations in Huangping Sag. Marine Origin Petroleum Geology, 12(3):33-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz200703007
|
陈建业, 杨晓松, 党嘉祥, 等, 2011.汶川地震断层带结构及渗透率.地球物理学报, 54(7):1805-1816. doi: 10.3969/j.issn.0001-5733.2011.07.014
|
范琦, 王贵玲, 蔺文静, 等, 2007.地下水脆弱性评价方法的探讨及实例.水利学报, 38(5):601-605. doi: 10.3321/j.issn:0559-9350.2007.05.014
|
辜海林, 岳晓晶, 陈鸿汉, 等, 2018.页岩气开采区地下水脆弱性评价模型.水资源保护, 34(5):57-62. http://d.old.wanfangdata.com.cn/Periodical/szybh201805009
|
关鑫, 左锐, 孟利, 等, 2017.傍河水源地选址适宜性评价方法研究.中国科技论文, 12(3):319-326. doi: 10.3969/j.issn.2095-2783.2017.03.013
|
贺永忠, 陈厚国, 谢渊, 等, 2015.上扬子东南缘寒武系碳酸盐岩台缘滩的发现与油气地质意义——以贵州石阡-岑巩为例.中国地质调查, 2(5):38-44. http://www.cnki.com.cn/Article/CJFDTotal-DZDC201505006.htm
|
姜桂华, 2002.关中盆地地下水脆弱性研究(硕士学位论文).西安: 长安大学.
|
金爱芳, 李广贺, 张旭, 等, 2012.地下水污染风险源识别与分级方法.地球科学, 37(2):247-252. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201202008.htm
|
李绍康, 袁颖, 李翔, 等, 2018.页岩气开发地下水污染风险评价指标体系构建.环境科学研究, 31(5):911-918. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201805015
|
林茂, 纪丹凤, 崔驰飞, 等, 2016.阿什河流域地下水脆弱性分区.环境科学研究, 29(12):1773-1781. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201612006
|
马金珠, 2001.塔里木盆地南缘地下水脆弱性评价.中国沙漠, 21(2) :170-174. doi: 10.3321/j.issn:1000-694X.2001.02.012
|
王淼淼, 陈宜金, 邢朕国, 等, 2018.基于DRTIC-SL的草原区露天煤矿地下水脆弱性评价.中国矿业, 27(10):165-169. http://d.old.wanfangdata.com.cn/Periodical/zgky201810035
|
王濡岳, 丁文龙, 龚大建, 等, 2016.黔北地区海相页岩气保存条件——以贵州岑巩区块下寒武统牛蹄塘组为例.石油与天然气地质, 37(1):45-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201601007
|
王生林, 2017.黔东南岑巩地区构造对牛蹄塘组页岩气成藏的影响(硕士学位论文).贵阳: 贵州大学.
|
王晓川, 吴根, 闫金定, 2018.世界页岩气开发及技术发展现状与趋势.科技中国, (12):17-21 doi: 10.3969/j.issn.1673-5129.2018.12.005
|
王玉芳, 翟刚毅, 冷济高, 等, 2017.贵州岑巩TX1井牛蹄塘组页岩压裂效果评价.地球科学, 42(7):1107-1115. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201707006.htm
|
王正和, 邓敏, 程锦翔, 等, 2018.康滇古陆西侧断裂及岩浆活动对油气保存条件的影响:以盐源盆地为例.地球科学, 43(10):3616-3624. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201810022.htm
|
谢崇宝, 袁宏源, 郭元裕, 1996.多指标权重分配模型研究.华北水利水电学院学报, 17(4):31-37. http://www.cnki.com.cn/Article/CJFDTotal-HBSL604.005.htm
|
张东晓, 杨婷云, 2015.美国页岩气水力压裂开发对环境的影响.石油勘探与开发, 42(6):801-807. http://d.old.wanfangdata.com.cn/Periodical/syktykf201506014
|
赵泽恒, 薛秀丽, 张桂权, 等, 2007.贵州黄平凹陷下古生界油气勘探潜力.海相油气地质, 12(3):33-43. doi: 10.3969/j.issn.1672-9854.2007.03.007
|