• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Fu Li, Shen Ruichen, Pang Fei, Yang Henglin, Chen Ke, 2019. Experiments on Friction and Non-Steady Slip for Shale. Earth Science, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189
    Citation: Fu Li, Shen Ruichen, Pang Fei, Yang Henglin, Chen Ke, 2019. Experiments on Friction and Non-Steady Slip for Shale. Earth Science, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189

    Experiments on Friction and Non-Steady Slip for Shale

    doi: 10.3799/dqkx.2019.189
    • Received Date: 2019-08-01
    • Publish Date: 2019-11-15
    • L11 sub-section shale reservoir is the major production layer in the South Sichuan shale gas block. For the horizontal well production, different well paths in the different layers can show quite big production gap, which may be due to the different shale crushabilities. However, the elastic modulus and brittle minerals for different layers in L11 sub-section have not shown much difference, so it is still impossible to evaluate the shale brittleness sufficiently with the conventional methods and models, Based on studies on the cause of earthquake, the steady & non-steady state failure is introduced to characterize the crushability for the different L11 layers in this paper. The new friction and steady & non-steady state experiments were designed to replace the conventional fault gauge testing method for the L11 outcrop samples. Firstly, the influence of the lamination, mineral constituents and normal stress on the friction for shale was studied and analyzed. Secondly, the steady & non-steady state behavior was characterized and quantified by the calculated a-b value for the shale with different mineral constituents. Thirdly, the critical value from velocity-weakening to velocity-strengthening was established by the overlay method. Taking Well YS108 field in Zhaotong shale block as the example, the different crushabilities for different layers were analyzed and discussed. It is found that L111-2 layers have better crushability that can cause the shear slide easily and generate the map cracking, while the L114 layers have worse crushability that generates the single cracking or cause the shear slide difficultly.

       

    • Das, I., Zoback, M.D., 2011. Long-Period, Long-Duration Seismic Events during Hydraulic Fracture Stimulation of a Shale Gas Reservoir. The Leading Edge, 30(7):778-786. https://doi.org/10.1190/1.3609093
      Das, I., Zoback, M.D., 2012. Microearthquakes Associated with Long Period, Long Duration Seismic Events during Stimulation of a Shale Gas Reservoir. 2012 SEG Annual Meeting, Las Vegas.
      Dieterich, J.H., 1978. Time-Dependent Friction and the Mechanics of Stick-Slip. Pure and Applied Geophysics, 116(4/5): 790-806. https://doi.org/10.1007/bf00876539
      Dieterich, J.H., 1979. Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations. Journal of Geophysical Research, 84(B5): 2161-2168. https://doi.org/10.1029/jb084ib05p02161
      Elsworth, D., 2017. Deformation and Permeability Evolution in Reservoir and Seals with a Focus on Well Survivability. Shale Gas Engineering Geomechanics International Conference, Beijing.
      Jiang, T.X., Bian, X.B., Su, Y., et al., 2014. A New Method for Evaluating Shale Fracability Index and Its Application. Petroleum Drilling Techniques, 42(5): 16-20 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syztjs201405003
      Jiang, Z.X., Duan, H.J., Liang, C., et al., 2017.Classification of Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Journal of Earth Science, 28(6):963-976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e201706001
      Li, J.Q., Zhang, P.F., Lu, S.F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4):823-833. doi: 10.1007/s12583-018-0835-z
      Li, Q.H., Chen, M., Jin, Y., 2012a. Experimental Research on Failure Modes and Mechanical Behaviors of Gas-Bearing Shale. Chinese Journal of Rock Mechanics and Engineering, 31(S2): 3763-3771 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=80a36d4bbfbba9aec1d0442bb0f137e6&encoded=0&v=paper_preview&mkt=zh-cn
      Li, Q.H., Chen, M., Jin, Y., et al., 2012b. Rock Mechanical Properties and Brittleness Evaluation of Shale Gas Reservoir. Petroleum Drilling Techniques, 40(4): 17-22 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201706004
      Li, W.Y., Zou, H.L., Wu, C.Z., et al., 2013. An Analysis of Shale Gas Development in View of Engineering Technologies. Acta Petrolei Sinica, 34(6): 1218-1224 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306026
      Li, Z., Jiang, Z.X., Tang, X.L., et al., 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.090
      Liang, X., Wang, G.C., Xu, Z.Y., et al., 2016. Comprehensive Evaluation Technology for Shale Gas Sweet Spots in the Complex Marine Mountains, South China: A Case Study from Zhaotong National Shale Gas Demonstration Zone. Natural Gas Industry, 36(1): 33-42 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854016300122
      Lu, B.P., 2013. SINOPEC Engineering Technical Advance and Its Developing Tendency in Shale Gas. Petroleum Drilling Techniques, 41(5): 1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syztjs201305001
      Mulen, M., Enderlin, M., 2012. Fracability Index-More than just Calculating Rock Properties. SPE Annual Technical Conferenceand Exhibition, San Antonio. https: //doi.org/10.2118/159755-MS
      Palmer, I.D., Moschovidis, Z.A., Cameron, J.R., 2007. Modeling Shear Failure and Stimulation of the Barnett Shale after Hydraulic Fracturing. SPE Hydraulic Fracturing Technology Conference, Texas.
      Simpson, R.W., 1997. Quantifying Anderson's Fault Types. Journal of Geophysical Research: Solid Earth, 102(B8):17909-17919. https://doi.org/10.1029/97jb01274
      Wu, Q., Xu, Y., Zhang, S.L., et al., 2014.The Core Theories and Key Optimization Designs of Volume Stimulation Technology for Unconventional Reservoirs. Acta Petrolei Sinica, 35(4):706-714 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201404011
      Xu, Y., Lei, Q., Chen, M., et al., 2018.Progress and Development of Volume Stimulation Techniques. Petroleum Exploration and Development, 45(5):874-887 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201805014
      Yang, H.L., Qiao, L., Tian, Z.L., 2017. Advances in Shale Gas Reservoir Engineering and Geomechanics Integration Technology and Relevant Discussions. Petroleum Drilling Techniques, 45(2):25-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syztjs201702005
      Yang, H.L., Zhang, J.J., Wang, G.C., et al., 2018. Fabric Difference and Mineral Nanomechanics Characteristics of High-Quality Shale in Longmaxi Formation, Weiyuan Block in Sichuan Basin and Zhaotong Block in Yunnan Province. Natural Gas Exploration and Development, 41(1):16-22 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqktykf201801004
      Yao, X.X., 1984. The Experimental Studies of Stable and Unstable Cracking by Using a Ultrasmall Testing Machine. Acta Geophysica Sinica, 27(5):439-445 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2282abed8e635cb1891029437739a097&encoded=0&v=paper_preview&mkt=zh-cn
      Yuan, J.L., Deng, J.G., Zhang, D.Y., et al., 2013. Fracability Evaluation of Shale-Gas Reservoirs. Acta Petrolei Sinica, 34(3): 523-527 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dkyqt201801016
      Yue, P.S., Shi, Q., Yue, L.Q., et al., 2017. The Latest Progress of Shale Gas Exploration and Development in China. Natural Gas Exploration and Development, 40(3):38-44 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=12368d33ed14a61e57dce360c8117275&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, S.C., 2017. Research on the Rule of Crack Propagation during Hydraulic Fracturing in Shale Gas Reservoir (Dissertation). Liaoning Technical University, Fuxin, 82-86 (in Chinese with English abstract).
      Zhu, R.K., Jin, X., Wang, X.Q., et al., 2018. Multi-Scale Digital Rock Evaluation on Complex Reservoir. Earth Science, 43(5):1773-1782 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.429
      Zoback, M.D., Kohli, A., Das, I., et al., 2012. The Importance of Slow Slip on Faults during Hydraulic Fracturing Stimulation of Shale Gas Reservoirs. SPE Americas Unconventional Resources Conference, Pittsburgh. https: //doi.org/10.2118/155476-MS
      Zou, C.N., Dong, D.Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2):166-178(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm
      蒋廷学, 卞晓冰, 苏瑗, 等, 2014.页岩可压性指数评价新方法及应用.石油钻探技术, 42(5): 16-20. http://d.old.wanfangdata.com.cn/Periodical/syztjs201405003
      李庆辉, 陈勉, 金衍, 2012a.含气页岩破坏模式及力学特性的试验研究.岩石力学与工程学报, 31(S2): 3763-3771. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2012S2044.htm
      李庆辉, 陈勉, 金衍, 等, 2012b.页岩气储层岩石力学特性及脆性评价.石油钻探技术, 40(4): 17-22. http://d.old.wanfangdata.com.cn/Periodical/syztjs201204004
      李文阳, 邹洪岚, 吴纯忠, 等, 2013.从工程技术角度浅析页岩气的开采.石油学报, 34(6): 1218-1224. http://d.old.wanfangdata.com.cn/Periodical/syxb201306026
      李卓, 姜振学, 唐相路, 等, 2017.渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制.地球科学, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090
      梁兴, 王高成, 徐政语, 等, 2016.中国南方海相复杂山地页岩气储层甜点综合评价技术——以昭通国家级页岩气示范区为例.天然气工业, 36(1):33-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201601004
      路保平, 2013.中国石化页岩气工程技术进步及展望.石油钻探技术, 41(5): 1-8. doi: 10.3969/j.issn.1001-0890.2013.05.001
      吴奇, 胥云, 张守良, 等, 2014.非常规油气层体积改造技术核心理论与优化设计关键.石油学报, 35(4):706-714. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201404011.htm
      胥云, 雷群, 陈铭, 等, 2018.体积改造技术理论研究进展与发展方向.石油勘探与开发, 45(5):874-887. http://d.old.wanfangdata.com.cn/Periodical/syktykf201805014
      杨恒林, 乔磊, 田中兰, 2017.页岩气储层工程地质力学一体化技术进展与探讨.石油钻探技术, 45(2):25-31. http://d.old.wanfangdata.com.cn/Periodical/syztjs201702005
      杨恒林, 张俊杰, 王高成, 等, 2018.四川威远及云南昭通区块龙马溪组优质页岩组构差异性与矿物纳米力学特征.天然气勘探与开发, 41(1):16-22. http://d.old.wanfangdata.com.cn/Periodical/trqktykf201801004
      姚孝新, 1984.用超小型压力机研究裂纹的稳态与非稳态扩展.地球物理学报, 27(5):439-445. doi: 10.3321/j.issn:0001-5733.1984.05.004
      袁俊亮, 邓金根, 张定宇, 等, 2013.页岩气储层可压裂性评价技术.石油学报, 34(3): 523-527. http://d.old.wanfangdata.com.cn/Periodical/syxb201303015
      岳鹏升, 石乔, 岳来群, 等, 2017.中国页岩气近期勘探开发进展.天然气勘探与开发, 40(3): 38-44. http://d.old.wanfangdata.com.cn/Periodical/trqktykf201703007
      张树翠, 2017.页岩气储层水力压裂裂纹扩展规律研究(博士学位论文).阜新: 辽宁工程技术大学, 82-86. http://cdmd.cnki.com.cn/Article/CDMD-10147-1018261624.htm
      朱如凯, 金旭, 王晓琦, 等, 2018.复杂储层多尺度数字岩石评价.地球科学, 43(5):1773-1782. doi: 10.3799/dqkx.2018.429
      邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二).石油勘探与开发, 43(2):166-178. doi: 10.11698/PED.2016.02.02
    • Relative Articles

    • Cited by

      Periodical cited type(2)

      1. 李勇,何建华,邓虎成,李瑞雪,李厂,曹峰,曹红秀. 深层页岩储层天然裂缝连通性表征及力学有效性分析——以川东南盆缘丁山—东溪地区五峰组—龙马溪组为例. 天然气地球科学. 2024(02): 230-244 .
      2. 温韬,张馨,孙金山,贾永胜,郎珉,贾文君,李德成,孙莉霞,唐辉明. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学. 2021(09): 3385-3396 . 本站查看

      Other cited types(4)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0501020304050
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 38.2 %FULLTEXT: 38.2 %META: 60.3 %META: 60.3 %PDF: 1.5 %PDF: 1.5 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.8 %其他: 3.8 %其他: 0.1 %其他: 0.1 %Baden: 0.1 %Baden: 0.1 %China: 0.3 %China: 0.3 %Higashiikebukuro: 0.1 %Higashiikebukuro: 0.1 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.3 %[]: 0.3 %上海: 0.9 %上海: 0.9 %东莞: 0.3 %东莞: 0.3 %临汾: 0.4 %临汾: 0.4 %临沂: 0.2 %临沂: 0.2 %丽水: 0.0 %丽水: 0.0 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.1 %佛山: 0.1 %北京: 31.6 %北京: 31.6 %北海: 0.2 %北海: 0.2 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %南平: 0.1 %南平: 0.1 %南昌: 0.0 %南昌: 0.0 %南通: 0.1 %南通: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.1 %唐山: 0.1 %商丘: 0.0 %商丘: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.6 %天津: 0.6 %娄底: 0.1 %娄底: 0.1 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.8 %宿迁: 0.8 %常州: 0.0 %常州: 0.0 %平顶山: 0.0 %平顶山: 0.0 %广安: 0.1 %广安: 0.1 %广州: 0.1 %广州: 0.1 %廊坊: 0.2 %廊坊: 0.2 %延安: 0.1 %延安: 0.1 %张家口: 0.7 %张家口: 0.7 %徐州: 0.1 %徐州: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.2 %扬州: 0.2 %承德: 0.1 %承德: 0.1 %无锡: 0.0 %无锡: 0.0 %晋城: 0.1 %晋城: 0.1 %景德镇: 0.0 %景德镇: 0.0 %杭州: 1.4 %杭州: 1.4 %武汉: 2.2 %武汉: 2.2 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.7 %漯河: 0.7 %玉林: 0.1 %玉林: 0.1 %玉溪: 0.1 %玉溪: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.0 %福州: 0.0 %绍兴: 0.1 %绍兴: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 12.0 %芒廷维尤: 12.0 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.1 %莫斯科: 0.1 %菏泽: 0.1 %菏泽: 0.1 %衢州: 0.4 %衢州: 0.4 %襄阳: 0.0 %襄阳: 0.0 %西宁: 32.2 %西宁: 32.2 %西安: 0.1 %西安: 0.1 %西雅图: 0.1 %西雅图: 0.1 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %达尔斯: 0.1 %达尔斯: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.9 %重庆: 0.9 %铜陵: 0.1 %铜陵: 0.1 %长沙: 0.4 %长沙: 0.4 %青岛: 0.6 %青岛: 0.6 %其他其他BadenChinaHigashiikebukuroSeattle[]上海东莞临汾临沂丽水乌鲁木齐佛山北京北海十堰南京南平南昌南通台州合肥呼和浩特哈尔滨哥伦布唐山商丘嘉兴天津娄底宣城宿迁常州平顶山广安广州廊坊延安张家口徐州成都扬州承德无锡晋城景德镇杭州武汉沈阳洛阳济南淄博淮安深圳温州湖州湘潭漯河玉林玉溪石家庄福州绍兴美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科菏泽衢州襄阳西宁西安西雅图贵港贵阳达尔斯达州运城邯郸郑州重庆铜陵长沙青岛

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(6)

      Article views (3559) PDF downloads(55) Cited by(6)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return